рефераты бесплатно

МЕНЮ


Курсовая работа: Привод к лебедке

σ F1 = σ F2 × YF1/YF2 < [σ] F1, (86)

где KFa - коэффициент, учитывающий распределение нагрузки между зубьями для степени

точности 9 с.63 [1], KFa = 1,1;

КFb - коэффициент неравномерности нагрузки по длине зуба, КFb = 1,05;

КFu - коэффициент динамической нагрузки, зависящий от окружной скорости и степени

точности по таб.4.3 с.62 [1], КFu = 1,01;

YF1 и YF2 - коэффициенты формы зуба колеса определяемый по таб.4.4 с.64 [1] в

зависимости от эквивалентного числа зубьев

Zυ 1 = Z1/ (cos β) 2, (87)

Zυ 1 = 33/0,9781 2 = 34,71

Zυ 2 = Z2/ (cos β) 3, (88)

Zυ 2 = 84/0,9781 3 = 90,6

Тогда по таб.4.4 с.64 [1] YF1 =3,75 и YF2 =3,60.

Коэффициент учитывающий наклон зуба Yb, определяем по формуле

Yb = 1 - β о/140, (89)

Yb = 1 - 12 о51 // 140 = 0,91

Тогда по формуле (85) и (86)

σ F2 = 3,6 × 0,91 × 4205,73 × 1,1 × 1,05 × 1,01/ (50 × 3) = 103,59 Н/мм 2< [σ] F = 170,75 Н/мм 2

σ F1 = 103,59 × 3,75/ 3,6 = 107,91 Н/мм 2 < [σ] F1 =192 Н/мм 2

При проверке на прочность определили что, рассчитанная передача соответствует рабочим нагрузкам.

Межосевое расстояние аW, мм определяем по формуле

аW = (d1 + d2) / 2, (90)

аW = (101,5 + 258,5) /2 = 180 мм

Пригодность заготовок шестерни и колеса определяем по формулам

Условие пригодности Dпред > Dзаг, Sпред > Sзаг

Dзаг1 = dа1 + 6, (91)

Dзаг1 =107,5 + 6 =113,5 мм < 125 мм - пригодно

Dзаг2 = dа2 = 264,5 мм - без ограничений

Sпред = 80 мм > Sзаг = b2 + 4 = 54 мм

Составим таблицу

Таблица 4 - Параметры косозубой открытой передачи

Открытая косозубая передача
Параметр Значение
Шестерня Колесо

Межосевое расстояние, аW (мм)

180
Модуль зацепления, m (мм) 3

Угол наклона зубьев, βо

12 о51 /

Числа зубьев Zi

33 84

Делительный диаметр, di (мм)

101,5 258,5

Диаметр вершин dаi (мм)

107,5 264,5

Диаметр впадин dFi (мм)

94,3 251,3
Ширина венца b, (мм) 54 50

Контактные напряжения зубьев, Н/мм 2

434,06

Напряжения изгиба зубьев, Н/мм 2

103,59 107,91

6. Нагрузки валов редуктора

Силы в зацеплении закрытой червячной передачи.

Окружную силу Ft1 и Ft2, кН определяем по формуле

Ft1 = 2 × T1 × 10 3/d1, (92)

Ft1 = 2 × 14,59 × 10 3/56 = 0,521 кН

Ft2 = 2 × T2 × 10 3/d2, (93)

Ft2 = 2 × 231,16 × 10 3/224 =2,06 кН

Радиальную силу Fr1 и Fr2, кН определяем по формуле

Fr1 = Fr2 = Ft2 × tg α, (94), Fr1 = Fr2 = 2,06 × 0,3639 = 0,75 кН

Осевую силу Fа1 и Fа2, Н определяем по формуле

Fа1 = Ft2 = 2,06 Н

Fа2 = Ft1 = 0,521 Н

Силы в зацеплении открытой зубчатой косозубой передачи

Окружную силу Ft3 и Ft4, кН определяем по формуле

Ft3 = Ft4 = 2 × T3 × 10 3/d2, (95)

Ft3 = Ft4 = 2 × 543,51 × 10 3/258,5 = 4,2 кН

Радиальную силу Fr3 и Fr4, кН определяем по формуле


Fr3 = Fr4 = Ft4 × tg α /cos β, (96)

Fr3 = Fr4 = 4,2 × 0,3639/0,9781 = 1,56 кН

Осевую силу Fа3 и Fа4, Н определяем по формуле

Fа3 = Fа4 = Ft4 × tg β, (97)

Fа3 = Fа4 = 4,2 × 0,229 = 0,96 Н

Консольные нагрузки. На быстроходном валу (червяка) от поперечных усилий муфты

Fм = 100 × , (98)

= 100 ×  = 416 Н

7. Разработка эскизного проекта

Материал валов Ст 35 твердостью ≤ 350 НВ2, термообработка - улучшение; по таб.3.2 [1] σ в = 550Н/мм 2, σТ = 270 Н/мм 2, σ-1 = 235 Н/мм 2, принимаем для вала-червяка τ-к = 10 Н/мм 2, для тихоходного вала τ-к = 20 Н/мм 2

Определение геометрических параметров валов.

Быстроходный вал:

Диаметр вала под полумуфту d1, мм определяем по формуле

d1 ³  , (99)

d1 ³ = 19,39 мм

Принимаем d1 = 20 мм.

Диаметр второй ступени вала под подшипник d2, мм определяем по формуле

d2 = d1 + 2 × t, (100)

d2 = 20 + 2 × 2 = 24 мм

Принимаем d2 =25 мм.

Диаметр третьей ступени d3, мм определяем по формуле

d3 = d2 + 3,2 × r, (101)

d3 = 25 +3,2 × 1,6 = 30,12 мм < df

Принимаем d3 = 30мм.

Тихоходный вал:

Диаметр вала первой ступени d1, мм определяем по формуле

d1 ³  , (102)

d1 ³ = 38,66 мм

Принимаем d1 =39 мм

Диаметр второй ступени вала под подшипник d2, мм определяем по формуле

d2 = d1 + 2 × t, (103)

d2 = 39 + 2 × 2 = 43 мм

Принимаем d2 = 45 мм.

Диаметр третьей ступени d3, мм определяем по формуле

d3 = d2 + 3,2 × r, (104), d3 = 45 + 3,2 × 1,6 = 50,12 мм

принимаем d3 = 50 мм.

Вал ведущего барабана:

Диаметр вала первой ступени d1, мм определяем по формуле

d1 ³  , (105)

d1 ³ = 51,41 мм,

Принимаем d1 = 52 мм.

Диаметр второй ступени вала под подшипник d2, мм определяем по формуле

d2 = d1 +2 × t, (106)

d2 = 52 + 2 × 2,8 = 57,6 мм,

Принимаем d2 =58 мм.

Диаметр третьей ступени d3, мм определяем по формуле

d3 = d2 + 3,2 × r, (107)

d3 = 58 + 3,2 × 3 = 67,6 мм

Принимаем d3 = 68 мм.


Расстояние между деталями передач.

Зазор между вращающимися деталями редуктора и стенка корпуса а, мм определяем по формуле

а = + 4, (108)

где L - наибольшее расстояние между внешними поверхностями деталей передач

а = + 4 = 11,14 мм

Принимаем а = 11 мм.

Расстояние между дном корпуса и поверхностью червяка b, мм определяем по формуле

b > 4 × а, (109)

b = 4 × 11 = 44 мм

8. Предварительный выбор подшипника

Для быстроходного вала выбираем роликоподшипник конический однорядный № 7205

dп = 25 мм, D = 52мм, Т = 16,5 мм, е = 0,36; Y = 1,67; Сr = 23,9 кН, Сrо = 22,3 кН.

Смещение точки приложения опорных реакций а, мм определяем по формуле

а = 0,5 × (Т + (D + dп) × е/3), (110)

а = 0,5 × (16,5 + (25 + 52) × 0,36/3) = 12,87 мм,

Для тихоходного вала выбираем роликоподшипник конический однорядный № 7209

dп = 45 мм, D = 85 мм, Т = 21 мм, е =0,41; Y = 1,45; Сr = 42,7 кН, Сrо = 33,4 кН.

Смещение точки приложения опорных реакций определяем по формуле (110)

а = 0,5 × (21 + (45 + 85) × 0,41/3) = 19,38 мм,

Для вала ведущей звездочки выбираем роликоподшипник конический однорядный № 7310

dп = 50 мм, D = 90 мм, Т = 22 мм, е = 0,37; Y = 1,60; Сr = 52,9 кН, Сrо = 40,6 кН.

Смещение точки приложения опорных реакций определяем по формуле (110)

а = 0,5 × (22 + (50 + 90) × 0,37/3) = 19,63 мм,

9. Выбор муфты

Для соединения выходных концов вала электродвигателя и быстроходного вала редуктора, установленных на общей раме выберем:

Втулочно-пальцевую муфту 31,5-15 - I.I. - 18-II.2-У3 ГОСТ 21424-75, Δr = 0,2.

Радиальная жесткость упругой втулочно-пальцевой муфты СΔr = 2140 Н.

Радиальная сила, Fм, кН вызванная радиальным смещением определенным по соотношению

Fм = СΔr × Δr, (111)

Fм = 2140×0,2 = 0,428 кН


10. Определение реакций в опорах подшипников валов

Определение опорных реакций и построение эпюр изгибающих моментов и поперечных сил.

Быстроходный вал. Исходные данные: Ft1 = 0,521 кН; Fr1 = 0,75 кН; Fа1 = 2,06 кН; Fм = 0,428 кН; КНL1 =100 мм; L2 = 80, мм; L3 = 80 мм; d1 = 56 мм.

∑Fx = 0; Rаx + Rвx + Ft1 + Fм = 0, (112)

∑Fy = 0; Rаy + Rвy - Fr1 = 0, (113)

∑Fz = 0; Fа1 - Rаz = 0,∑Mдx = 0; Rаy × (L2 + L3) - Fr1 × L3 + Fа1 × d1 /2 = 0, (114)

∑Mдy = 0; - Rаx × (L2 + L3) - Ft1 × L3 - Fм × (L2 + L3 + L1) = 0, (115)

Из уравнения (114)

Rаy = (Fr1 × L3 - Fа1 × d1 /2) / (L2 + L3) = (0,75 × 80 - 2,06 × 56/2) /160 = 0,015 кН

Из уравнения (115)

Rах = ( - Ft1 × L3 - Fм × (L2 + L3 + L1)) / (L2 + L3)

Rах = (-0,521 × 80 - 0,428 × 260) /160 = - 0,96 кН

Тогда

Rвx = - Rаx - Ft1 - Fм = 0,96 - 0,521 - 0,428 = 0,011 кН.

Rвy = Fr1 - Rаy = 0,75 - 0,015 = 0,735 кН.

M1x = Rау × L2 = 0,015 × 80 = 1,2 Нм;

M1x/ = Rаy × L1 + Fа1 × d1 /2 = 1,2 + 2,06 × 56/2 = 58,88 Нм

Mау = - Fм × L1 = 0,428 ×100 = - 42,8 Нм

M1у = - Fм × (L1 + L2) - Rах × L2 = - 0,428 × 180 + 0,96 × 80 = - 0,24 Нм

Ra = = = 2,27 кН

Rв = == 0,74 кН

Mмакс = = = 58,9 Нм

Тихоходный вал.

Исходные данные Ft2 = 2,06 кН; Fr2 = 0,75 Н; Fа2 = 0,521 Н; Ft3 = 4,2 кН; Fr3 = 1,56 кН; Fа3 = 0,96 кН; L1 = 40 мм; L2 = 40 мм; L3 =100 мм; d2 = 224 мм; d3 = 101,5 мм.


∑Fx = 0; Rсx + Rдx + Ft2 + Ft3 = 0, (115)

∑Fy = 0; Rсy + Rдy - Fr3 + Fr2 =0, (116)

∑Fz = 0; Fа3 - Fа2 - Rсz = 0,Rсz = Fа3 - Fа2 = 0,96 - 0,521 = 0,439 кН

∑Mдx = 0; Rсy × (L2 + L1) + Fr2 × L2 + Fr3 × L3 + Fа2 × d2 /2 + Fа3 × d3 /2 = 0, (117)

∑Mдy= 0; - Rсx × (L2 + L1) - Ft2 × L2 + Ft3 × L3 = 0, (118)

Из уравнения (117)

Rсy = - (Fr2 × L2 + Fr3 × L3 + Fа2 × d2 /2 + Fа3 × d3 /2) / (L2 + L1)

Rсy = - (0,75 × 40 + 1,56 × 100 + 0,521 × 224/2 + 0,96 × 101,5/2) / (40 + 40) = - 3,66 кН

Из уравнения (118)


Rсх = ( - Ft2 × L2 + Ft3 × L3) / (L2 + L1),

Rсх= (-2,06 × 40 + 4,2 × 100) /80 = 4,22 кН

Тогда

Rдx = - (Rсx + Ft2 - Ft3) = - (4,22 + 2,06 - 4,2) = - 2,08 кН

Rдy = Fr3 - Fr2 - Rсy = 1,56 - 0,75 + 3,66 = 4,47 кН

M1x = Rсу × L1 = - 3,66 × 40 = - 146,4 Нм

M1x/ = Rсy × L1 + Fа2 × d2 /2 = - 146,4 + 0,521 × 24/2 = - 88 Нм

Mдx = Rсy × (L2 + L1) + Fr2 × L2 + Fа2 × d2 /2 = - 3,66 × 80 + 0,75 × 40 + 0,521 × 40/2 = - 252,38 Нм

M2x = - Fа3 × d3 /2 = - 0,96 × 101,5/2 = - 48,72 Нм

M1у = - Rсх × L1 = - 4,22 × 40 = - 168,8 Нм

Mду = - Rсx × (L2 + L1) - Ft2 × L2 = - 4,22 × 80 - 2,06 × 40 = - 420 Нм

M2у = 0,Rс =  == 5,6 кН

Rд =  == 4,93 кН

Mмакс =  =  = 490 Нм

Mк = 444,31 Нм

11. Проверочный расчет валов

Пределы выносливости в расчетном сечении вала (σ-1) d и (τ - 1) d, Па определяем по формуле

(σ-1) d = σ-1/ (К σ) d, (119)

(τ - 1) d = τ - 1/ (К τ) d, (120)

где σ-1 и τ - 1 - пределы выносливости гладких образцов при симметричном цикле изгиба и

кручения, Па; для материала Ст 20 σ-1 = 260 МПа, τ - 1 = 150,8 МПа.

Коэффициенты концентрации нормальных напряжений К σ) d и касательных напряжений (К τ) d для расчетного сечения вала определяем по формуле

(К σ) d = ( (К σ / К d ) + К F - 1) /Ку, (121)

(К τ) d = ( (К τ/ К d ) + К F - 1) /Ку, (122)

где К σ и К τ - эффективные коэффициенты концентрации напряжения, К σ = 1,55 и К τ = 1,4

Кd - коэффициент влияния абсолютных размеров поперечного сечения, Кd = 0,88

Ку - коэффициент влияния поверхностного упрочнения, Ку = 1,25

К F - коэффициент, К F = 1,05.

Коэффициенты определяем по т.11.2 - 11.5 с.257 [1] э

(К σ) d = ( (1,55/0,88) + 1,05 - 1) /1,25 =1,45

(К τ) d = ( (1,4/ 0,82 ) + 1,05 - 1) /1,25 = 1,4

Подставляем найденные значения в формулу (119) и (120)

(σ-1) d = 260 /1,45 = 179,31 Н/мм 2

(τ - 1) d = 150,8/1,4 =107,71 Н/мм 2

Определим нормальные и касательные напряжения в опасных сечениях вала и коэффициент запаса прочности в опасном сечении:

σ = Ммакс × 10 3/Wнетто, (123)

τ = Мк × 10 3/ 2 × Wrнетто, (124)

где Ммакс - максимальный изгибающий момент в рассматриваемом сечении вала, Нм, Мк - крутящий момент, Нм

Осевой момент сопротивления сечения вала Wнетто, мм 3 определяем по формуле

Wнетто = 0,2 × D 3, (125)

Общий коэффициент запаса прочности в опасном сечении S, определяем по формуле

S =  ≥ [S] = 1,6……2, (126)

Коэффициент запаса прочности по нормальным и касательным напряжениям Sσ и S τ определяем по формуле

Sσ = σ-1/σ, (127)

S τ = τ - 1/τ (128)

Быстроходный вал:

Ммакс = 58,9 Нм, Мк = 14,59 Нм, минимальный диаметр вала D = 20 мм

Подставляем значения в формулу (123) и (124)

σ = 58,9 × 10 3/0,2 × 20 3 = 36,81 Н/мм 2

τ = 14,59 × 10 3/ 2 × 0,1 × 20 3 = 9,11 Н/мм 2

Найденные значения подставляем в формулу (127) и (128)

Sσ = 179,31 /36,81 = 4,87

S τ = 107,71 /9,11 = 11,82

Тогда по формуле (126)

S =  = 4,5 ≥ [S] = 2

Тихоходный вал:

Ммакс = 490 Нм, Мк = 444,31 Нм, минимальный диаметр вала D = 39 мм

Подставляем значения в формулу (123) и (124)

σ = 490 × 10 3/0,2 × 39 3 = 41,3 Н/мм 2

τ = 444,31 × 10 3/ 2 × 0,1 × 39 3 = 37,45 Н/мм 2

Найденные значения подставляем в формулу (127) и (128)

Sσ = 179,31 /41,3 = 4,34

S τ = 107,71 /37,45 = 2,87

Тогда по формуле (126)

S = = 2,4 ≥ [S] =2

12. Проверочный расчет подшипников

Быстроходный вал:

роликоподшипник конический однорядный № 7205

dп = 25 мм, D = 52мм, Т = 16,5 мм, е = 0,36; Y = 1,67; Сr = 23,9 кН, Сrо = 22,3 кН.

Fа1 = 2,06 кН, Rа = 2,27 кН, Rв = 0,74 кН,, Lh = 8409,6 часов и ω1 = 150,2 с - 1

Подшипники устанавливаем по схеме "враспор".

Осевые составляющие радиальных реакций Rs2, кН и Rs1, кН определяем по формуле

Rs2 = Rа × 0,83 × е, (129)

Rs2 = 2,27 × 0,63 × 0,36 = 0,514 кН

Rs1 = Rв × 0,83 × е, (130)

Rs1 = 0,83 × 0,74 × 0,36 = 0,16 кН

Осевые нагрузки подшипников: Rs1 > Rs2 и Fа > Rs1 - Rs2, то Rа2 = Rs2,Rа1 = Rs2 + Fа = 0,16 + 2,06 = 2,22 кН

Определяем отношение

Rа1/ (V × R1) = 2,22/ (1 × 2,27) = 0,98 > е

Следовательно максимальную эквивалентную нагрузку RЕ, кН определяем по формуле

RЕ2 = (V × х × Rа + Rа1 × Y ) Кг × Кт;, (131)

RЕ2 = (1 × 0,4 × 2,27+ 2,22 × 1,67) × 1,2 × 1,01 = 5,59 кН

Динамическую грузоподъемность подшипника Сr р, кН для опоры А определяем по формуле

Сr р = RЕ2 × , (132)

Сr р = 5,59 × = 40,31 кН > Сr = 23,9 кН

Подшипник не пригоден.

Рассмотрим установку № 7208

dп = 40 мм, D = 80 мм, Т = 20 мм, е = 0,368; Y = 1,56; Сr = 42,7 кН, Сrо = 33,4 кН.

RЕ2 = (1 × 0,4 × 2,27+ 2,22 × 1,56) × 1,2 × 1,01 = 5,29 кН

Сr р1 = 5,29 ×   = 38,14 кН < Сr = 42,7 кН

Подшипник пригоден.

Тихоходный вал:

роликоподшипник конический № 7209

dп = 45 мм, D = 85 мм, Т = 21 мм, е = 0,41; Y = 1,45; Сr = 42,7 кН, Сrо = 33,4 кН.

∑Fz = Fа3 - Fа2 = 0,96 - 0,521 = 0,44 кН, Rс = 5,6 кН, Rд = 4,93 кН, Lh = 8409,6 часов и ω2 = 9,39 мин - 1

Подшипники устанавливаем по схеме "враспор".

Осевые составляющие радиальных реакций Rs2, кН и Rs1, кН определяем по формуле

Rs1 = R1 × 0,83 × е, (133)

Rs1 = 0,83 × 5,6 × 0,37 = 1,72 кН

Rs2 = R2 × 0,83 × е, (134)

Rs2 = 0,83 × 4,93 × 0,37 = 1,51 кН

Осевые нагрузки подшипников: Rs1 > Rs2 и Fа > Rs1 - Rs2, то Rа1 = Rs2,Rа1 = Rs2 + Fа = 1,51 + 0,44 = 1,95 кН

Определяем отношение

Rа1/ (V × Rс) = 1,95/ (1 × 5,6) = 0,348 < е

Следовательно максимальную эквивалентную нагрузку RЕ, кН определяем по формуле

RЕ1 = V × Rс × Кг × Кт, (135)

RЕ1 = 1 × 5,6 × 1,2 × 1,01 = 6,8 кН

Динамическую грузоподъемность подшипника Сr р, кН для наиболее нагруженной опоры С определяем по формуле

Сr р2 = RЕ1 × , (136)

Сr р1 = 6,8 ×   = 21,34 кН > Сr = 35,2 кН

Подшипник пригоден

13. Проверочный расчет шпонок

Условие прочности

σ = Ft/ Асм ≤ [σ] см, (137)

где Ft - окружная сила, Н; Ft = 0,521 кН,

[σ] см - допускаемое напряжение на смятие, Н/мм 2; [σ] см = 115 Н/мм 2.

Для быстроходного вала выбираем шпонку 6х6х15 ГОСТ 23360-78.

Площадь смятия Асм, мм 2 определяем по формуле

Асм = (0,94 × h - t1) × lр,, (138)

Асм = (0,94 × 6 - 3,5) × 15 = 32,1 мм 2

Подставляем значения в формулу (137)

σ = 521/32,1 = 16,23 ≤ [σ] см = 115 Н/мм 2

Условие выполняется.

Для тихоходного вала выбираем шпонку 12х8х20 ГОСТ 23360-78

Площадь смятия Асм, мм 2 определяем по формуле (138)

Асм = (0,94 × 8 - 5) × 20 = 50,4мм 2

Ft = 4,2 кН

Подставляем значения в формулу (137)

σ = 4,2 × 1000/50,4 = 83,33 ≤ [σ] см = 115 Н/мм 2

Условие выполняется.

14. Смазывание деталей редуктора

Смазывание червячной передачи редуктора жидким маслом картерным непроточным способом.

Выбор сорта масла зависит от значения расчетного контактного напряжения в зубьях и фактической окружной скорости колес по таб.10.29. [1] выбираем индустриальное масло без присадок И-Т-Д-220 ГОСТ 17479.4-87

Для смазывания открытой зубчатой передачи и цепной передачи применяем периодический способ вязкими маслами, которые наносят на зубья через определенные промежутки времени.

РАЗБОРКА И СБОРКА РЕДУКТОРА.

До начала ремонта редуктора следует отключить от электросети, очистить от грязи и стружки, а масло из картера слить (выкручиваем пробку поз.17). Кроме того перед началом ремонтных работ необходимо подготовить: слесарный инструмент, оснастку для демонтажа и съемники.

Прежде чем производить разборку редуктора необходимо рассоединить полумуфты поз. 19 эл. двигателя от редуктора. Редуктор при возможности не отсоединяем от фундамента.

Разборку начинаем с откручивания пробки поз.4, выкручиваем винты поз. 20, убираем шайбы поз.25 и снимаем крышку поз.6. Затем откручиваем болты поз. 19 с крышек поз.8 и 10, снимаем крышку глухую поз.8 и крышку 10. Далее выкручиваем остальные болты поз. 19 с крышек поз.5, 15,7. Снимаем крышку глухую поз.5, крышку поз.15 и крышки поз.7. Демонтируем вал поз.14 с колесом червячным поз.1 и подшипниками 7209А поз.24 вместе с червяком поз.2 с подшипниками 7208А поз.23 постепенно (т.е. прокручиваем червяк и одновременно вытаскиваем его из корпуса поз.3 и затем вал с червячным колесом). После этого валы промываем, очищаем и вытираем на сухо.

С червяка поз.2 демонтируем подшипники поз.23 и шпонку поз.27.

С вала поз.14 демонтируем подшипники поз.24, втулку поз.16, червячное колесо поз.1 и шпонки поз.28 и 29.

Вал, подшипники, червяк и червячное колесо очищают, промывают. вытирают на сухо и проверяют их тех. состояние при необходимости их заменяют на новые, а если они ремонтопригодные, то их ремонтируют. Шпонки заменяют на новые. Манжеты поз.21 и 22 в крышках поз 10 и 15 заменяют на новые. Корпус поз.3 очищают, промывают и вытирают на сухо.

Подшипники, червячное колесо демонтируют специальными предусмотренными приспособлениями (съемниками).

Снятые узлы и крупные детали храним на деревянных подкладках, в специально отведенных местах. Крепежные мелкие детали необходимо хранить на специальных стеллажах.

Редуктор собирают по схеме разборки, устанавливая необходимые зазоры в зубчатом зацеплении, в подшипниках и т.д.


Список литературы

1. Анурьев П.Ф. Справочник конструктора-машиностроителя. В 3т.6-е изд. - М.: Машиностроение, 1982.

2. Дунаев П.Ф., Леликов О.П. Конструирование узлов и деталей машин. Учеб. Пособие для машиностроит. Спец. Вузов. - 4-е изд., перераб. И доп. - М.: Высш. шк., 1985 - 416 с., ил.

3. Шейнблит А.Е. Курсовое проектирование деталей машин: Учеб. Пособие для техникумов. - М.: Высш. шк., 1991. - 432 с.: ил.


Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.