рефераты бесплатно

МЕНЮ


Курсовая работа: Расчет гидравлической системы

Рабочие площади поршней силовых цилиндров со стороны нагнетаемой  и со стороны вытесняемой жидкости  отличаются на величину площади сечения штоков. В данном варианте задания

0.0063585 м2; (10)

0.0053025м2 (11)

0.00527834 м2; (12)

0.00457184 м2. (13)

2.3 Коэффициенты К линий "Ш" и "Н" в контуре ABCD

Объём вытесняемой из силового цилиндра жидкости отличается от объёма нагнетаемой вследствие наличия штоков с одной стороны поршней.

Коэффициенты


 (14)

 (15)

зависят от того, с какой стороны поршней нагнетается жидкость. В данном задании имеем

0.8024; (16)

0.8661. (17)

2.4 Распределение подачи Q между линиями "Ш" и "Н"

В контуре ABCD можно выделить две параллельные линии: линию "Н", обслуживающую силовой цилиндр носовой стойки шасси и линию "Ш" для силовых цилиндров основных стоек. Элементы линии "Ш" для левой и правой стоек симметричны. Участок линии "Н" состоит из последовательно соединённых элементов. В этом случае характеристики элементов суммируются путём сложения потерь давления при одном и том же расходе. Силовой цилиндр представлен эквивалентным сопротивлением, потеря давления в котором  не зависит от расхода со стороны линии нагнетания . При этом расход внутри цилиндра меняется от значения  в линии нагнетания на  в линии слива.

Запишем уравнение характеристики линии "Н":

, (18)

0,5E+0006 Па ;

= 2,47E+09 Па*с/м3; (19)


 - объёмный расход нагнетаемой жидкости в линии "Н".

Уравнение характеристики линии "Ш" учитывает наличие 2-х параллельных цилиндров:

, (20)

0,5E+0006 Па ;

= 1,35E+09Па*с/м3; (21)

 - объёмный расход нагнетаемой жидкости в линии "Ш".

Так как в точках A и D давления в линиях "Н" и "Ш" равны, имеем уравнение с двумя неизвестными  и :

. (22)

Запишем второе уравнение

. (23)

Пользуясь способом подстановки, получим

;

;

. (24)

Так как задано, что , окончательно имеем


 0,35∙Q при .(25)

Аналогично получим

 0,65∙Q при . (26)

Отношение подач

1,857 (27)

Уравнение характеристики структуры ABCD при условии, что  имеет вид

. (28)

По аналогии с электрическим сопротивлением и проводимостью параллельно соединённых проводников имеем

, (29)

Откуда

. (30)

В результате получена характеристика участка линии ABCD как единого трубопровода, построенная по расходу в линии нагнетания Q, при этом трубопроводы линии нагнетания и линии слива рассчитаны по своим расходам.

2.5 Определение длины хода штоков цилиндров

При одновременном срабатывании всех цилиндров имеем уравнение:

. (31)

Задаём длину хода штока цилиндра основного шасси. Введём обозначения

 (32)

. (33)

Отношение  должно быть в пределах от 3 до 12, принимаем .

Из (31) имеем отношение длины к диаметру для цилиндра носового шасси:

. (34)

Очевидно, что если , получим запрещённое значение .

Таким образом, только если , имеем


, (35)

. (36)

Если же , то задаём длину хода штока цилиндра носового шасси:

 (37)

и принимаем .

Из уравнения (31) получим следующее соотношение

, (38)

Откуда

 0,69 м; (39)

0,984 м;. (40)

2.6 Рабочая (расчётная) подача насоса

После определения значений  и  находим действительные подачи в линиях.

1.337E-0004 м3/с;(41)

8.945E-0005 м3/с; (42)


Расходы в линиях слива "Ш" и "Н"

 1,07E-04 м3/с; (43)

 7,74637E-05 м3/с; (44)

Рабочая подача насоса

 2,23E-04 м3/с; (45)

Суммарный расход в линии слива

1,84E-04 м3/с; (46)

Отношение слива к подаче в системе в целом

0,83 (47)

2.7 Характеристика гидросистемы

Если система спроектирована по условию, что перепад давления на поршнях , движение поршней начинается одновременно после достижения указанного перепада давлений. В случае ламинарного течения имеем линейную зависимость перепада давления на насосе от расхода жидкости:

, (48)

где в положении крана I I


7,30E+09Па*с/м3. (49)

Прямую линию определяют координаты 2-х точек:

1) значение перепада давления  на насосе, равного перепаду давлений на поршнях, при равновесном состоянии неподвижных поршней, когда расход равен нулю;

2) значение перепада давления  на насосе при перемещении поршней из одного крайнего положения в противоположное за заданный промежуток времени.

2,13E+06Па при 2,23E-04 м3/с. (50)

График характеристики гидросистемы представлен на рис. 2.


3. Построение характеристики насоса

Обычно гидросистема проектируется "под насос" с известными характеристиками. Как правило, применяется гидроаккумулятор, предназначенный для поддержания давления в системе в заданном диапазоне при различных режимах и условиях работы.

В данном учебном расчёте необходимо определить характеристики насоса, обеспечивающие равномерную работу упрощённой гидросистемы без гидроаккумулятора при заданных условиях работы по температуре жидкости, времени срабатывания и т.д.

По характеристике гидросистемы определён расчётный секундный расход  и соответствующий перепад давления на насосе . С учётом внутренних утечек теоретическое значение подачи QТ проектируемого насоса объёмного типа при нулевом перепаде давления

, (51)

где  – параметр насоса, определяющий внутренние утечки.

Линейный график характеристики насоса определяют две точки. Первая точка – рабочий (расчётный) режим работы гидросистемы, вторая точка при нулевом перепаде давления на насосе , где расход

2,34E-04м3/с.

График характеристики насоса представлен на рис. 2.


Рис. 2. Характеристика гидросистемы и насоса


4. Параметры рабочих циклов гидросистемы

Гидравлические характеристики системы позволяют определить ход штоков цилиндров, подачу в линиях, рабочие усилия на штоках, мощность насоса на рабочем режиме, КПД системы и др. Рассматривается расчётный режим работы гидросистемы с расходом . Усилия на штоках силовых гидроцилиндров

3,18E+03 Н; (52)

2,64E+03 Н. (53)

Скорость перемещения штоков силовых цилиндров:

1,05E-02 м/с; (54)

1,69E-02 м/с. (55)

Полезная мощность гидропередачи  на рабочем режиме:

111,58 Вт. (56)

Мощность насоса на рабочем режиме:

475,15Вт. (57)

Коэффициент полезного действия гидравлической системы без учета КПД насоса определяется по полезной работе, производимой гидроцилиндрами:


0,2348. (58)

Число Рейнольдса находят по наибольшей скорости в гидросистеме:

, (59)

или

 (60)

В данном случае 496,38, что значительно ниже критического . Следовательно, поток во всех трубопроводах ламинарный.

Выше было показано, что на расчётном режиме работы системы насос будет работать в условиях кавитации, поэтому выход на расчётный режим невозможен. Там же перечислены возможные варианты устранения этого дефекта.


Выводы

В данной работе выполнен в первом приближении поверочный расчёт упрощённой гидросистемы уборки и выпуска трёхстоечного шасси самолёта с носовым колесом при заданных геометрических и динамических характеристиках.

В результате расчёта получены следующие основные характеристики гидросистемы:

1. Вследствие наличия штоков на одной стороне поршней силовых цилиндров при работе гидросистемы объём вытесняемой в линию слива жидкости  отличается от объёма нагнетаемой жидкости  в  раз, а именно:

0.8024– коэффициент K для цилиндра основного шасси;

 0.8661 – коэффициент K для цилиндра носового шасси;

0,83– отношение слива к подаче в системе в целом в расчётном режиме.

Это обстоятельство должно быть принято во внимание при назначении величины объёма гидробака системы.

2. При заданных значениях перепада давления на поршнях силовых цилиндров и условии одновременного перемещении поршней всех силовых цилиндров из одного предельного положения в противоположное следует принять следующую (максимально допустимую по условиям прочности) длину хода штоков:

0,69 м – ход штока цилиндра основного шасси, м;

0,984 м – ход штока цилиндра носового шасси, м;

3. На расчётном режиме отношение подачи жидкости в линию "Ш" к подаче в линию "Н"


1,857;

при этом

0,6– доля расхода основного шасси от общего расхода ;

0,4– доля расхода носового шасси от общего расхода .

4. Для обеспечения заданного времени срабатывания насос должен обеспечивать подачу жидкости с расходом 223 см3/с при перепаде давления на насосе 2.13 МПа.

Развиваемая мощность насоса на расчётном режиме системы 475,15 Вт.

5. При заданных значениях диаметров поршней силовых цилиндров и заданном перепаде давления на них, без учёта потерь на трение, имеем следующие значения усилий на штоках:

2788 Н – усилие на штоке цилиндра основного шасси;

 2294 Н – усилие на штоке цилиндра носового шасси.

6. Скорость перемещения штоков, полезная мощность и КПД системы:

0,01 м/с – скорость перемещения штока цилиндра основного шасси;

0,01695 м/с – скорость перемещения штока цилиндра носового шасси;

111,58 Вт – полезная мощность силовых цилиндров системы;

0,2348 – КПД гидропередачи.

7. Режим течения жидкости во всех трубопроводах ламинарный.

8. Согласно выполненному расчёту имеем отрицательное абсолютное давление в жидкости на входе в насос, что физически невозможно. Следовательно, предложенная для расчёта схема гидросистемы является неработоспособной, т.к. гидронасос будет работать в условиях кавитации. Для устранения этого дефекта можно предложить следующие решения:

а) увеличить диаметр всасывающего трубопровода и уменьшить, по возможности, его длину; б) поставить фильтр не перед насосом, а после него;

в) применить наддув гидробака или дополнительный подкачивающий насос.

9. В расчёте второго приближения следует учесть влияние силы трения манжет в силовых цилиндрах, а также возможную разницу температур нагнетаемой и сливаемой жидкости, которая возможна вследствие охлаждения силовых цилиндров во время полёта.


Список источников

1. Грайворонский В.А. Расчёт параметров гидравлической системы /учебное пособие/ Xарьков, "ХАИ", 2008. – 28 с.

2. Баєв Б.С., Чмовж В.В. Гідравліка та гідравлічні системи літальних апаратів /навчальний посібник/ Xарків, "ХАІ", 2001. – 126 с.

3. Гидравлика, гидромашины и гидроприводы / Т.М. Башта, Т.М. Руднев. Б.Б. Некрасов и др. Москва, "Машиностроение", 1982. – 426 с.


Страницы: 1, 2


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.