рефераты бесплатно

МЕНЮ


Реферат: Утилизация и вторичная переработка отходов производства полиуретанов

Технологии переработки отходов полиуретана разрабатываются уже более десяти лет, но в последнее время вопрос вторичной переработки и утилизации встал особенно остро. Среди причин актуальности этой проблемы закрытие свалок, повышение стоимости вывоза отходов, правительственные постановления, устанавливающие квоты на переработанные пластмассы. Основными технологиями вторичной переработки полиуретанов являются регенерация энергии, механическая переработка и химическая переработка. Целесообразность выбора каждого метода зависит от перерабатываемого продукта, места расположения, стоимости энергоносителей, предполагаемых рынков конечного применения. Большая часть перерабатываемых на сегодня полиуретанов является промышленными отходами. Вторичная переработка отходов после использования продуктов и изделий до некоторой степени затрудняется отсутствием инфраструктуры сбора, сортировки и обработки, хотя различные отраслевые группы своими силами пытаются решить эти проблемы.


Глава 2. Способ переработки полиуретановых отходов

В настоящее время производственные отходы полиуретанов вывозятся на свалки и сжигаются, причем сжигание сопровождается вторичным загрязнением атмосферы вследствие образования высокотоксичных цианистых соединений и окиси углерода.

Между тем вторичные полиуретаны при их рациональном использовании могут служить источником расширения сырьевой базы, экономии денежных и трудовых ресурсов, так как способны снизить потребность в первичных материалах.

Поскольку уничтожение полиуретановых отходов приводит к безвозвратным потерям ценных сырьевых ресурсов и возникновению экологических проблем, разработка способов их переработки приобретает особую актуальность, если к тому же исследования ориентированы на рециклизацию полимера.

Возможности вторичной переработки полиуретанов обусловлены особенностями структуры и физико-механических свойств сырья.

Исходными компонентами для их получения являются чаще всего олигомерные полиолы (простые или сложные полиэфиры), низкомолекулярные полиолы и полиизоцианаты. В зависимости от функциональности полиэфира и изоцианата получаются линейные или сетчатые материалы; в соответствии с целевым назначением они могут быть монолитными или пористыми.

Используемые для различных целей полиуретаны характеризуются огромным многообразием физико-химических, физико-механических, эксплуатационных свойств: от эластичных до очень жестких, от высокопрочных монолитов до хрупких "твердых пен". Поэтому в каждом конкретном случае необходим специфический подход к их переработке.

Полиуретаны, используемые для производства обувных подошв, относятся к типу линейных мелкопористых материалов.

Описанные в литературе способы переработки вторичного полиуретанового сырья либо неработоспособны, либо нерентабельны.

В частности, известен способ переработки полиуретановых отходов путем их механического измельчения в крошку требуемой дисперсности с дальнейшей грануляцией последней. Гранулы используют в качестве наполнителя полимерных композиций типа пресс-порошков. (пат. ФРГ N 2540934; авт. св. Болгарии N 40412, 87).

Этот способ находит применение для утилизации хрупких твердых пенополиуретанов.

Диспергирование же обувных отходов представляет большую сложность ввиду их пластичности при повышенных температурах, развивающихся в шнековых экструдерах или дробильных устройствах, применяемых для измельчения: в процессе работы аппарата происходит оплавление полимера на его рабочих органах и диспергирование прекращается.

Известен способ переработки полиуретановых отходов путем термической обработки полиуретана при интенсивном перемешивании полимерной массы в смесителе.

Этот способ используется при переработке непористых полиуретанов с малой плотностью сшивки, которые способны переходить в эластичное состояние, но не плавиться в диапазоне температур 150-200oC, а при комнатной температуре снова становится твердой и хрупкой массой, которая легко измельчается в мелкодисперсный порошок при приложении механического воздействия. В таком виде полимер смешивается с порошкообразным диизоцианатом и прессуется в блоки при повышенных температурах и давлениях (B. Meister, H. Schaper. Polyurethan-Recycling Losungen fur ein Problem. Kunststoffe, 80 (1990), 11).

Указанный способ отличается простотой и доступностью аппаратурного оформления. В качестве недостатков сами авторы отмечают снижение прочности и эластичности переработанного полиуретана по сравнению с уровнем тех же характеристик исходного материала приблизительно на 10% а также утрату ровной глянцевой поверхности из-за наличия неплавких частичек гранулята. Основным же препятствием к использованию рассматриваемого способа для переработки отходов обувного полиуретана является сложность их предварительного измельчения, о чем было сказано выше. Следует отметить, что измельчение должно быть очень тонким, так как иначе закапсюлированные в пористой структуре воздушные включения будут сжиматься при увеличении давления и стремиться к восстановлению прежнего объема при нормальных условиях, что не позволит получать монолитные, механически прочные блоки. Ликвидации пор могло бы способствовать увеличение температуры перед фазой прессования, однако предел текучести материала настолько близок к температуре макромолекулярной деструкции его, что на практике такой прием не может быть использован: образцы, полученные при жесткой термообработке (свыше 160oC) исходного сырья, имеют неудовлетворительную прочность.

Известен способ переработки полиуретановых отходов путем алкоголиза последних спиртами, то есть способ химической регенерации:

В ходе реакции образуются олигомерные гидроксилсодержащие соединения, которые можно добавлять в исходное сырье или отверждать с помощью диизоцианатов. Рассматриваемому способу переработки полиуретанов посвящено больше всего работ. (пат. ФРГ N 2546815, 75; пат. США N 4025559; пат. Японии N 53-18239, 78; Н.М. Колесников, С.В. Гюльмамедова, В.А. Федасов. Способ утилизации отвержденных отходов уретановых эластомеров. Каучук и резина, 1983, N 48, с.44-45).

Однако из-за сложности технологического оформления, отсутствия типового оборудования, необходимости добавления значительного количества свежего полиизоцианата, низких физико-механических параметров переработанного полиуретана, этот способ практического использования не получил.

Предложен способ превращения полиуретановых отходов в термопластичный относительно мелкодисперсный сыпучий гранулят с последующей переработкой его на обычных термопласт-аппаратах (экон. пат. ГДР N 262237, 88).

Способ заключается в следующем: отходы или бракованные изделия из полиуретанового эластомера растворяют в диметилформамиде при повышенном давлении и температуре 90oC, при этом соотношение диметилформамида к полиуретану составляет 4:

В раствор добавляют разбавитель (хлористый метилен, циклогексанон, ацетон, эфиры уксусной кислоты), в котором полиуретановые эластомеры сильно набухают, но не растворяются; при этом соотношение разбавителя к эластомеру составляет 15:

Из разбавленного раствора эластомер осаждают метанолом, или безводным этанолом, или петролейным эфиром при соотношении осадителя к эластомеру, равном (25-50): 1, затем отделяют твердую фракцию фильтрованием и высушивают. В результате получают мелкозернистый сыпучий продукт, в котором преобладают частицы одинакового размера, и перерабатывают его на обычных машинах для переработки пластмасс; переработанный материал имеет прочность 20-25 МПа, твердость по Шору 82, относительное удлинение 550-600%.

Использование больших количеств разбавителя, осадителя и растворителя (на 1 кг полимерного материала затрачивается от 90 до 140 кг органических жидкостей) и необходимость дальнейшего разделения их для возвращения в процесс повышает трудоемкость и затрудняет организацию промышленной переработки обувных отходов.

Учитывая, что проблема утилизации полиуретановых отходов год от года обостряется, создание экономичной, экологически безопасной, промышленно осуществимой технологии их переработки для получения широкого ассортимента новых изделий и материалов с высокими физико-механическими и эксплуатационными свойствами является задачей актуальной.

С этой целью авторами предлагается способ переработки полиуретановых отходов обувной промышленности, сущность которого заключается в том, что отходы или бракованные изделия пористого полиуретанового эластомера подвергают сначала естественной пластификации при комнатной температуре путем добавления в них органических соединений апротонного типа в соотношении, равном 1: (0,2-0,4), затем принудительной пластификации путем вальцевания при комнатной температуре, а прессование изделий из полученного полимерного полотна осуществляют при температуре 125-130oС, давлении 50-80 МПа в течение 12-15 мин.

В качестве органических соединений апротонного типа используют диметилформамид, диметилацетамид, диметилсульфоксид.

Предлагаемая технология обеспечивает более мягкие условия подготовки полиуретанового эластомера к прессованию, исключающие термическое воздействие, неизбежно приводящее к деструктивным последствиям и ухудшению физико-механических свойств конечного материала. Использование небольшого количества органического соединения способствует естественной пластификации, при которой достигается увеличение подвижности меж - и внутримолекулярных связей без их разрушения, а вальцевание создает условия для нужной ориентации фрагментов макромолекул и их оптимальную упаковку в объеме, что позволяет получать из бесформенных блоков монолитное гомогенное полотно, лишенное воздушных включений.

Присутствие в системе соединения апротонного типа обеспечивает восстановление прежних и образование новых водородных связей, упрочняющих полимерное полотно.

Процесс прессования изделий из полотна при рекомендуемых технологических параметрах также исключает вероятность термодеструкции полимера, гарантирует сохранение высоких значений физико-механических параметров, обеспечивает получение ровной, гладкой, блестящей поверхности деталей с отчетливым оттиском на ней требуемого рисунка.

Для реализации способа используют обычно применяемое в технологии получения эластомеров различной природы оборудование: любое перемещающее устройство; вальцы с гладкими валками; гидравлический пресс с обогреваемыми плитами.

полиуретан вторичная переработка полиол


Глава 3. Синтез полиуретанов: вторичные полиолы

Среди известных методов переработки ПУ отходов наиболее эффективным признан гликолиз, позволяющий получать вторичные полиолы.

Целью настоящего исследования явилось изучение химической структуры, физико-химических параметров продуктов гликолиза и синтез на их основе новых ПУ материалов.

Объектами гликолиза служили предварительно измельченные образцы:

- литьевого монолитного ПУ торговой марки СКУ-ОМ [2], получаемого взаимодействием полиэтиленбутиленгликольадипината 2000 и 2,4 толуилендиизоцианата (ТДИ) или его смеси с изомерами в» (ПЭБА) ММ присутствии каталитических количеств 2,4,6-трис (диметиламинометил) фенола (ОМ) при соотношении NCO/OH = 1,15;

- эластичного ППУ (ЭППУ) холодного формования, получаемого взаимодействием гидроксилсодержащего компонента марки "Эластофом А" на основе простого полиэфира окиси этилена и окиси пропилена Лапрола 5003 [3] и ТДИ при массовом соотношении 1.8: 1;

- жесткого ППУ (ЖППУ), получаемого взаимодействием гидроксилсодержащего компонента на основе простого полиэфира окиси пропилена Лапрола 564 и полиизоцианата при массовом соотношении 1: 1,1.

В качестве деструктирующих агентов (ДА) использовались гидроксилсодержащие соединения, входящие в основной состав производственной композиции. В случае СКУ-ОМ таковыми являлись смесь ПЭБА и ОМ. Для разрушения ЭППУ использовали смесь N,N,N’,N’ - тетрагидроксипропиленэтилендиамина (торговая марка Лапрамол 294) и Лапрола 5003. Для ЖППУ использовали Лапрол 564. Массовые соотношения СКУ-ОМ: ДА=60: 40, ЭППУ: ДА=40: 60 и ЖППУ: ДА=40: 60 были выбраны экспериментально, исходя из максимального количества отходов и минимума ДА.

Гликолиз проводили в колбе с перемешивающим устройством при температурах 120, 150 и 180 оС. В колбу загружали ДА, доводили температуру до заданного уровня и непрерывно вводили измельченный ПУ.

Химическая структура продуктов гликолиза исследовалась методом ИК-спектроскопии. ИК-спектры регистрировались в области 4000-400 см-1 на спектрометре Specord 75 IR. Использовались образцы в виде капли зажатой между стеклами КBr.

Содержание гидроксильных и аминных групп определялось химическими методами [4-6].

Физико-механические показатели исходных и вторичных ПУ определялись согласно стандартам ИСО.

ИК-спектроскопический анализ продукта гликолиза СКУ-ОМ показал наличие полос поглощения, характерных для уретановой ( (3340, 1735, 1535, 780см - 1), сложноэфирой (1735 см - 1) и гидроксильной (3460 см - 1) групп. Наличие указанных групп позволило предположить, что продукт гликолиза представляет собой смесь бифункциональных по ОН - группам полиолов и уретанполиолов, образующихся в результате каталитического гликолиза аллофанатных, сложноэфирных и уретановых фрагментов (рис., реакции 1,3,4).

Поскольку в ДА входит ОМ в реакционных количествах, то наряду с гликолизом, не исключена возможность протекания фенолиза указанных групп, которая приводит к образованию моно - и даже нефункциональных по ОН - группам соединений.

Важнейшим технологическим параметром, позволяющим контролировать процесс гликолиза, является содержание в системе гидроксильных групп (СОН). Установлено, что СОН в гликолизате после незначительного снижения, связанного с углублением деструктивных процессов, 1,8 %. Указанное¸ 1,7~через 16 часов при 120 оС стабилизируется на уровне значение фактически соответствует содержанию ОН-групп в исходном полиэфире.

Ввиду того, что полученный гликолизат имеет близкое строение и параметры с ПЭБА применяемого для синтеза литьевых монолитных ПУ, появилась возможность его использования в качестве части полиольной составляющей при получение каучука СКУ-ОМ. Динамика изменения физико-механических показателей СКУ-ОМ, полученных с применением вторичного полиола показывает достаточно высокий уровень прочностных показателях вплоть до 20% содержания ПУ отходов (табл.1).

Следующим объектом химической деструкции служили ЭППУ и ЖППУ. Разрушение указанных ПУ возможно за счет гликолиза аллофанатных, биуретовых, уретановых и мочевинных групп. В результате образуются соединения с концевыми гидроксильными и аминными группами (рис., реакции 1,2,4,5). Изучение зависимости дест.) иtсодержания в продуктах гликолиза ОН - и NН2-групп от времени (температуры (Тдест.) разрушения показало, что в "мягких условиях" (120 оС) идет образование только гидроксильных групп, концентрация которых закономерно снижается с течением времени и в дальнейшем выходит на плато. Для систем 8,5 % мас., а для~ (ЭППУ+Лапрол 5003+Лапрамол 294) это значение составляет 9,8 % мас. Данные значения близки к количеству ОН-групп~ (ЖППУ+Лапрол 564) - изначально поставляемых смесью Лапрола 5003 и Лапрамола 294 (9,4 % мас) и Лапрола 564 - (10,2 % мас.). Наблюдаемая тенденция может иметь место только в случае гликолиза аллофанатных, биуретовых и уретановых групп (рис., реакции 1,2,4), приводящих к образованию гидроксилсодержащих соединений. повышение дест.). В первые часыtтемпературы приводит к изменению зависимости СОН=f деструкции наблюдается незначительное плато, которое переходит в довольно резкое падение значений СОН. Период достижения постоянных значений СОН уменьшается с увеличением Тдест. Уровень же плато независимо от Тдест. остается постоянным и его значения соответствуют СОН продуктов гликолиза при 120 оС. Дальнейшее дест приводит к одновременному убыванию концентрации ОН-групп иtувеличение росту содержания в гликолизате NH2-групп за счет распада мочевинных связей ППУ (реакция 5). При этом суммарная концентрация ОН - и NН2-групп в системе, в силу обменного характера процессов гликолиза и аминолиза, остается постоянной.

Рекомендуется использовать в качестве вторичных полиолов продукты гликолиза ППУ в период выхода значений СОН на уровень постоянных значений.

ИК-спектры вторичных полиолов на основе ЭППУ и ЖППУ свидетельствуют о наличии полос поглощения соответствующих гидроксильной (3400-3500 см-1), уретановой (1725-1730, 1515-1535 и 770 см-1), мочевинной (1610-1620 см-1), простой эфирной (1090-1110 см-1) и изоциануратной (1420 см-1), в случае полиола на основе ЖППУ, групп. Присутствие в спектрах этих полос позволяет охарактеризовать вторичные полиол на основе системы (ЭППУ+Лапрол 5003+Лапрамол 294) как смесь Лапрола 5003, Лапрамола 294 и простых полиолов, содержащих в своей структуре уретановые и мочевинные связи, вторичный полиол на основе системы (ЖППУ+Лапрол 564) как смесь Лапрола 564 и полиолов с уретановыми, мочевинными и изоциануратными группами.

Полученные вторичные полиолы были апробированы в качестве гидроксилсодержащих компонентов в синтезе клеевых и герметизирующих композиций [7,8]. В частности, прочности клеевых соединений на отрыв и сдвиг образцов сталь 3-сталь 3, выполненные композицией на основе вторичного полиола (ЭППУ+Лапрол 5003+Лапрамол 294) с содержанием 40 мас. ч. отходов ЭППУ, соответственно составляют 21 МПа и 12 МПа. Этот клей может успешно конкурировать с существующими уретановыми клеями конструкционного назначения.


Литература

1.  А.С. № 679603 (СССР). Заявлено 10.02.78.

2.  Разработка технологического процесса переработки полиуретановых отходов в жидкие полиолы различного назначения. - Пермь: НИИПМ, 1992. - 45 с.

3.  Разработка рецептуры и технологии изготовления реологической добавки на основе полиуретановых отходов для асфальтно-бетонных смесей. - Пермь: НИИПМ, 1997. - 23 с.

4.  Переработка отходов полиуретанов способом высокотемпературного гликолиза. Отчет ЦЗЛ. - Пермь: ФГУП "Пермский завод имени С.М. Кирова", 1997. - 9 с.

5.  А.С. № 679603 (СССР). Заявлено 10.02.78.

6.  Разработка технологического процесса переработки полиуретановых отходов в жидкие полиолы различного назначения. - Пермь: НИИПМ, 1992. - 45 с.

7.  Разработка рецептуры и технологии изготовления реологической добавки на основе полиуретановых отходов для асфальтно-бетонных смесей. - Пермь: НИИПМ, 1997. - 23 с.

8.  Переработка отходов полиуретанов способом высокотемпературного гликолиза. Отчет ЦЗЛ. - Пермь: ФГУП "Пермский завод имени С.М. Кирова", 1997. - 9 с.

9.  Оценка возможности использования полиуретановой крошки в качестве наполнителя полимерных материалов. Отчет ЦЗЛ. - Пермь: ФГУП "Пермский завод имени С.М. Кирова", 1997. - 2 с.


Страницы: 1, 2


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.