рефераты бесплатно

МЕНЮ


Дипломная работа: Моделирование нагрева асинхронного двигателя

To min – минимальная постоянная охлаждения;

Kо – коэффициент охлаждения.

Значение θуст определяется решением (1.19) для установившегося режима, то есть при dθ/dt=0.

По сути дела, в модели [9] двигатель так же представлен двумя телами нагрева: обмоткой статора с минимальной постоянной нагрева Tmin и сталью машины с максимальной постоянной нагрева Tmax. Недостатком данной модели является отсутствие задания начальных условий.

Самой простой тепловой моделью электродвигателя является представление его одним телом нагрева [7,8,10,11]. При этом вводятся следующие допущения:

1.  Электродвигатель имеет бесконечно большую теплопроводность и, как следствие, одинаковую температуру по всему объему;

2.  Количество теплоты, которым электродвигатель обменивается с окружающей средой, пропорционально разности температур двигателя и окружающей среды;

3.  Тепловые параметры электродвигателя и окружающей среды постоянны и не связаны с температурой двигателя (это обстоятельство обеспечивает линейность тепловой модели).

В этом случае уравнение, описывающее нагрев двигателя:

. (1.24)

Решение этого уравнения при постоянстве потерь двигателя ΔP=const и, следовательно, постоянном установившемся превышении температуры:

, (1.25)

где Δθ(t) – текущее превышение температуры двигателя над температурой окружающей среды;

Δθуст – установившееся превышение температуры двигателя;

Δθ0 – начальное превышение температуры двигателя;

Тθ=С/А – постоянная времени нагрева.

В силу того, что асинхронный двигатель представляет собой сложную термодинамическую систему, неоднородную по своим тепловым параметрам, последняя модель является довольно грубым приближением.

1.3 Патентное исследование

Известны устройства для защиты двигателя от перегрузок, использующие тепловую модель двигателя. Так, например, выдан патент №2192698 на устройство для защиты двигателей. Принципиальная схема устройства приведена на рисунке 1.5.

Это устройство содержит датчик (3) тока для подключения в цепь питания двигателя, квадратор (5), входы которого подключены к выходам датчика тока, тепловой имитатор (6) электродвигателя (тепловую модель), входы которого подключены к выходам квадратора, компаратор (7) и исполнительное реле (8). Тепловой имитатор представляет собой тепловую модель первого порядка, то есть двигатель представлен как однородное тело.

Рисунок 1.5 – Устройство для защиты электродвигателей


В патенте №2192699 описывается устройство для защиты электродвигателя. Принципиальная схема устройства приведена на рисунке 1.6.

Это устройство содержит трансформаторы тока (1, 2, 3), выпрямитель (4), блок (5) контроля перегрузок, блок формирования времятоковой характеристики, состоящий из теплового имитатора (6) электродвигателя, компаратора (7), и исполнительного реле (8). Здесь так же используется тепловая модель первого порядка.

Рисунок 1.6 – Устройство для защиты электродвигателя


2. Выбор и определение параметров тепловой модели асинхронного двигателя

2.1 Выбор тепловой модели

Задача выбора АД по нагреву не требует высокой точности определения температуры меди, которую обеспечивает ЭТС с большим количеством узлов. Поэтому за основу принята модель, представляющая двигатель как два коаксиальных цилиндра [7,8] (см. рисунок 1.4). Основные принципы, на которых базируется модель, рассмотрены в разделе 1.

Данная модель более точно моделирует нагрев двигателя по сравнению с представлением двигателя однородным телом нагрева. В то же время имеется возможность аналитического определения коэффициентов, присутствующих в уравнении (1.20), с достаточной для поставленной задачи точностью.

Перегруппировав неизвестные в уравнениях системы (1.20) получим систему вида:

 (2.1)

Системе уравнений (2.1) соответствует ЭТС, изображенная на рисунке 2.1.

В указанной схеме тепловые сопротивления определяются как величины, обратные соответствующим коэффициентам теплоотдачи.

Таким образом, коэффициенты А1, А12 и А2 возможно определить, приведя эквивалентными преобразованиями тепловую схему замещения асинхронного двигателя к тепловой схеме двухцилиндрической модели.


Рисунок 2.1 – ЭТС, соответствующая двухцилиндрической модели двигателя

2.2 Определение коэффициентов теплоотдачи

2.2.1 Аналитическое определение А1, А2, А12

Для определения коэффициентов теплоотдачи рассмотрим упрощенную эквивалентную тепловую схему замещения асинхронного двигателя закрытого исполнения [4,9], (см. рисунок 1.3). Коэффициенты теплоотдачи считаем постоянными, то есть одинаковыми в переходном и установившемся режимах. Следовательно, для их определения можно рассматривать схему (см. рисунок. 1.3) в установившемся режиме (рисунок 2.2), что значительно упрощает решение. Так же введем допущение, что двигатель имеет независимое принудительное охлаждение, то есть коэффициенты теплоотдачи одинаковы при выключенном и включенном двигателе.

Рисунок 2.2 – Приведенная ЭТС закрытого обдуваемого двигателя для стационарного режима


Система уравнений для этой схемы имеет вид [2]:

 (2.2)

Так как в схеме (рисунок 2.2) рассмотрены лобовая и пазовая части обмотки в отдельности, а необходимо знать среднюю температуру обмотки, то по правилам эквивалентных преобразований [4], объединим эти источники в один (рисунок 2.3).

Рисунок 2.3 – Объединение лобовой и пазовой частей обмотки

После преобразования (2.3) схема имеет 5 узлов (рисунок 2.4), то есть схеме соответствует система уравнений 5-го порядка.

Объединим сопротивления Ra1 с R'м,в и Ra2 с R'м,с:

 (2.4)


Рисунок 2.4 – ЭТС закрытого обдуваемого двигателя с объединенными пазовой и лобовой частями обмотки

В итоге имеем схему, изображенную на рисунке 2.5 которой соответствует система уравнений (2.5).

Рисунок 2.5 – Окончательный вид преобразованной ЭТС закрытого обдуваемого двигателя

 (2.5)

Систему уравнений (2.5) необходимо свести к системе уравнений второго порядка, в которой неизвестными выступили бы Δθм и Δθс,ст. Для сокращения записи выражений введем замену:


;

;

.

;

;

;

;

(2.6)

;

;

;

;

Подставив в (2.5) выражения (2.6), получим:

 (2.7)

Пренебрежем механическими и добавочными потерями (Pв,вт=0), так как их величина мала по сравнению с основными потерями (потери в меди, стали, роторе) и, как следствие, они незначительно влияют на превышение температуры меди и стали.

Для того чтобы понизить порядок системы (2.7) выразим из последних трех уравнений Δθрот, Δθв,вт и Δθк через Δθм и Δθс,ст:

; (2.8)

; (2.9)

. (2.10)


Подставив выражение (2.9) в первое уравнение системы (2.7) получим:

. (2.11)

Для соответствия выражения (2.11) первому уравнению системы (1.20) добавим и вычтем из (2.11) . В результате простых алгебраических преобразований получим уравнение соответствующее первому уравнению системы (1.20):

. (2.12)

Аналогично поступаем со вторым уравнением системы (2.7). Подставив в него выражения (2.8) и (2.10) получим:

. (2.13)

Для соответствия выражения (2.13) второму уравнению системы (1.20) добавим и вычтем из (2.13) . В результате простых алгебраических преобразований получим уравнение соответствующее второму уравнению системы (1.20):


. (2.14)

Обозначим:

; (2.15)

; (2.16)

; (2.17)

; (2.18)

. (2.19)

Ниже будет показано, что потери в роторе Ррот пропорциональны току статора, что позволяет объединить Рм и Ррот (2.18), Рст и Ррот (2.19).

Выражения (2.15) – (2.19) позволяют определить коэффициенты теплоотдачи и потери, необходимые для построения тепловой модели асинхронного двигателя, используя тепловые сопротивления эквивалентной тепловой схемы двигателя.

2.2.2 Расчет тепловых сопротивлений

Тепловые сопротивления для эквивалентной тепловой схемы рассчитываются по методике, приведенной в [2].

1) Сопротивление аксиальное меди статора (тепловое сопротивление между пазовой и лобовой частями обмотки)

, (2.20)

где lп – длина паза, м;

lл – средняя длина одной лобовой части, м;

λм – коэффициент теплопроводности меди, Вт/(м∙0С);

Fм – площадь поперечного сечения меди в пазу, м2;

Z1 – число пазов статора.

2) Тепловое сопротивление между медью статора и внутренним воздухом

, (2.21)

где R'л,вш – тепловое сопротивление внешней (обращенной к станине) продуваемой лобовой части обмотки, 0С / Вт;

R''л,вш – тепловое сопротивление внешней (обращенной к станине) непродуваемой лобовой части обмотки, 0С / Вт;

R'л,вт – тепловое сопротивление внутренней (обращенной к станине) продуваемой лобовой части обмотки, 0С / Вт;

R''л,вт – тепловое сопротивление внутренней (обращенной к станине) непродуваемой лобовой части обмотки, 0С / Вт.

Тепловое сопротивление между внешней продуваемой лобовой частью обмотки и внутренним воздухом:


, (2.22)

где bп – средняя ширина паза, м;

hп,эф – эффективная по меди высота паза, м;

lл,п – продуваемая длина лобовой части, м;

δокр – толщина окраски лобовых частей, м;

λокр – коэффициент теплопроводности окраски лобовых частей, Вт/(м∙0С);

Z1 – число пазов статора;

λэкв – эквивалентный коэффициент теплопроводности обмотки, Вт/(м∙0С);

αл,вш – коэффициент теплоотдачи внешней поверхности лобовых частей обмотки статора, Вт/(м2∙0С).

Эквивалентный коэффициент теплопроводности обмотки:

, (2.23)

где kз – коэффициент заполнения паза;

dи – диаметр изолированного провода, мм;

kп – коэффициент пропитки обмотки;

Тср – средняя температура обмотки;

λп – коэффициент теплопроводности пропиточного состава;

λи – коэффициент теплопроводности изоляции проводов.

Коэффициент теплоотдачи внешней поверхности лобовых частей обмотки статора:


, (2.24)

где λв – коэффициент теплопроводности воздуха, Вт/(м∙0С);

Dл,вш – внешний диаметр лобовой части, м;

Nuвш – число Нуссельта для внешней поверхности лобовых частей.

Число Нуссельта для внешней поверхности лобовых частей:

, (2.25)

где Reвш – число Рейнольдса для внешней поверхности лобовых частей.

Число Рейнольдса для внешней поверхности лобовых частей:

, (2.26)

где uрот – окружная скорость ротора, м/с;

ν – кинематическая вязкость воздуха, м2/с.

Тепловое сопротивление между внешней непродуваемой лобовой частью обмотки и внутренним воздухом:

, (2.27)

где hп,эф – эффективная по меди высота паза, м;

lл,в-длина вылета лобовой части обмотки, м.

Тепловое сопротивление между внутренней продуваемой лобовой частью обмотки и внутренним воздухом:


, (2.28)

где αл,вт – коэффициент теплоотдачи внутренней поверхности лобовых частей обмотки статора, Вт/(м2∙0С).

Коэффициент теплоотдачи внутренней поверхности лобовых частей обмотки статора:

, (2.29)

где Nuвт – число Нуссельта для внутренней поверхности лобовых частей;

Число Нуссельта для внутренней поверхности лобовых частей:

, (2.30)

где Reвт – число Рейнольдса для внутренней поверхности лобовых частей.

Число Рейнольдса для внутренней поверхности лобовых частей:

, (2.31)

где Dл,вт – внутренний диаметр лобовой части, м.

Тепловое сопротивление между внутренней непродуваемой лобовой частью обмотки и внутренним воздухом:


. (2.32)

3) Тепловое сопротивление между медью статора и сердечником статора

, (2.33)

где Rд,п – сопротивление отводу теплоты через дно паза, 0С / Вт;

Rз – термическое сопротивление зубца, 0С / Вт;

Rп,з – тепловое сопротивление между пазовой частью обмотки и зубцами, 0С / Вт;

Rсп – сопротивление учитывающее разное сопротивление спинки сердечника собственному и внешнему тепловым потокам, 0С / Вт.

Сопротивление отводу теплоты через дно паза:

, (2.34)

где δи,п – толщина пазовой изоляции, м;

λи,п – коэффициент теплопроводности пазовой изоляции, Вт/(м∙0С);

δв,п – толщина воздушных прослоек (равная половине допуска на укладку), м;

λв,экв – эквивалентный коэффициент теплопроводности воздушных прослоек в пазу, Вт/(м∙0С).

Страницы: 1, 2, 3, 4, 5, 6


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.