рефераты бесплатно

МЕНЮ


Учебное пособие: Электрические аппараты



Рис. 10.5. Схема трансформатора постоянного тока (а), изменение токов в его обмотках (б) и измерительный трансформатор постоянного напряжения (в)

Усилитель с самонасыщением (МУС)

а) Физические процессы. Если в цепь рабочей обмотки МУ включить диод, то под действием постоянной составляющей выпрямленного тока происходит подмагничивание магнитопровода. Такие усилители называются усилителями с самоподмагничиванием или с самонасыщением (МУС). При рассмотрении такого усилителя (рис. 10.6) примем, что обратное сопротивление диода VD равно бесконечности, а прямое учитывается сопротивлением RB. В цепи управления включен балластный дроссель Хб для ограничения переменного тока, создаваемого рабочей обмоткой. Полярность напряжения источника, при которой диод проводит ток, примем за положительную, полупериод, при котором ток проходит через нагрузку, назовем рабочим (РП). Процессы, происходящие в МУС, в основном определяются формой динамической петли гистерезиса материала магнитопровода. Динамической петлей гистерезиса материала называется зависимостьВ(Н) при быстром изменении намагничивающего тока. Вследствие магнитной вязкости и вихревых токов в материале процесс перемагничивания замедляется и ширина динамической петли гистерезиса превышает ширину статической петли. Чем больше тем шире петля гистерезиза. Для материала с высокой степенью прямоугольности кривой намагничивания динамическая петля гистерезиса имеет форму параллелограмма (рис. 6.6, о).


Рис. 10.6. Схема однополупериодного МУС

При отсутствии управляющего поля магнитопровод под-магничивается полем, созданным постоянной составляющей тока рабочей обмотки. Под действием этого поля в магнитопроводе устанавливается остаточная индукция  В рабочем полупериоде рабочая точка, характеризующая состояние магнитопровода, с ростом тока перемещается по участку 1—3. Так как магнитопровод насыщен, индуктивное сопротивление обмотки wp равно нулю. Все напряжение источника приложено к активному сопротивлению цепи К концу рабочего полупериода состояние магнитопровода вновь возвращается в точку 1. Таким образом, при отсутствии сигнала управления ток нагрузки в рабочий полупериод


В следующий полупериод диод не пропускает ток и состояние магнитопровода характеризуется точкой 11 (напряжение источника приложено к вентилю и iР =0)

Двухполупериодные схемы МУС

Однополупериодная схема (рис. 10.6) практически не применяется из-за следующих недостатков:

1.Для ограничения наведенных в обмотке управления токов необходим балластный дроссель, наличие которого ухудшает выходные параметры МУС.

2.Прохождение рабочего тока лишь в течение одного полупериода уменьшает мощность нагрузки.

3.Схема пригодна для питания нагрузки только выпрямленным током.


Рис. 10.7. Магнитный усилитель с самонасыщением:

а — динамическая петля гистерезиса;

На рис. 10.7 изображены двухполупериодные мостовые схемы усилителя с нагрузкой на постоянном и переменном токе. При полярности вторичной обмотки питающего трансформатора, обозначенной на рис. 10.7, а, в верхнем усилителе МУС 1 имеет место рабочий полупериод, а в нижнем МУС 11 — полупериод управления. В следующем полупериоде МУС 11 будет находиться в рабочем полупериоде, а МУС1 — в полупериоде управления.

При большом сопротивлении в цепи управления переменная составляющая напряжения, наведенная на обмотках wy обмотками wр, создает малый переменный ток, которым можно пренебречь. Тогда по цепи управления протекает только ток Iу. Такой режим работы МУС называется режимом вынужденного намагничивания. В этом случае условия работы каждого МУС аналогичны рассмотренным ранее.

Обычно сопротивление цепи управления мало и для компенсации наводимых на обмотках wy ЭДС начала и концы обмоток должны соединяться, так, как показано на рис 10.8. Две обмотки управления могут быть заменены одной. При этом для схемы 10.8, а необходимо изменить направление включения рабочих обмоток wp (рис. 10.8).

 

 

 

 

 

Рис. 10.8. Схемы двухполупериодного МУС с общей обмоткой управления

Параметры МУС

Статические параметры

а) Крутизна характеристики управления. Для МУС характерна зависимость выходного напряжения Up только от:

 (10.5)

Напряжение на нагрузке

Изменение индукцииопределяется током управления Iу. Как видно из (10/5), выходное напряжение Up не зависит от сопротивления рабочей цепи, и при данном токе управления МУС является управляемым источником напряжения. Еслито U мало зависит от сопротивления нагрузки.

Характеристикой управления МУС называется зависимость выходного напряжения от тока управления Up(Iy) или напряжения на нагрузке от тока управления Uн(Iy).

Крутизна характеристики управления

Подставляя в это выражение значение UB получаем


Но

Следовательно,

 

Производнаяхарактеризует наклон кривой размагничивания магнитопровода МУС и условно может определяться эквивалентной магнитной проницаемостью размагничивания Введем понятие индуктивного сопротивления размагничивания:


Тогда имеем

 

Таким образом,

б) Коэффициент усиления МУС. Коэффициент усиления по току

 

Коэффициент усиления по напряжению

 

Коэффициент усиления по мощности

 


Лекция №11

Тема лекции:

Предохранители, параметры, требования, характеристики. Выбор предохранителей.

Общие сведения

Предохранители — это электрические аппараты, предназначенные для зашиты электрических цепей от токовых перегрузок и токов КЗ. Основными элементами предохранителя являются плавкая вставка, включаемая последовательно с защищаемой цепью, и дугогасительное устройство.

К предохранителям предъявляются следующие требования.

1. Времятоковая характеристика предохранителя должна проходить ниже, но возможно ближе к времятоковои характеристике защищаемого объекта.

2.  Время срабатывания предохранителя при КЗ должно быть минимально возможным, особенно при защите полупроводниковых приборов. Предохранители должны работать с токоограничением .

3. При КЗ в защищаемой цепи предохранители должны обеспечивать селективность защиты.

4. Характеристики предохранителя должны быть стабильными, а технологический разброс их параметров не должен нарушать надежность защиты.

5. В связи с возросшей мощностью установок предохранители должны иметь высокую отключающую способность.

6. Конструкция предохранителя должна обеспечивать возможность быстрой и удобной замены плавкой вставки при ее перегорании.

Нагрев плавкой вставки при длительной нагрузке

Основной характеристикой предохранителя является времятоковая характеристика, представляющая собой зависимость времени плавления вставки от протекающего тока. Для совершенной защиты желательно, чтобы времятоковая характеристика предохранителя (кривая 1 на рис. 11.1) во всех точках шла немного ниже характеристики защищаемой цепи или объекта (кривая 2 на рис. 11.1). Однако реальная характеристика предохранителя (кривая 3) пересекает кривую 2. Поясним это. Если характеристика предохранителя соответствует кривой 1, то он будет перегорать из-за старения или при пуске двигателя. Цепь будет отключаться при отсутствии недопустимых перегрузок. Поэтому ток плавления вставки выбирается больше номинального тока нагрузки. При этом кривые 2 и 3 пересекаются. В области больших перегрузок (область Б) предохранитель защищает объект. В области А предохранитель объект не защищает.

При небольших перегрузках (l,5–2) IH0M нагрев предохранителя протекает медленно. Большая часть тепла отдается окружающей среде. Сложные условия теплоотдачи затрудняют расчет плавкой вставки.

Ток, при котором плавкая вставка сгорает при достижении ею установившейся температуры, называется пограничным током IПОГР.


Рис. 11.1. Согласование характеристик предохранителя и защищаемого объекта

Для того чтобы предохранитель не срабатывал при номинальном токе Iном., необходимо. С другой стороны, для лучшей защиты значение IПОГР. должно быть возможно ближе к номинальному. При токах, близких к пограничному, температура плавкой вставки должна приближаться к температуре плавления.

В связи с тем, что время плавления вставки при пограничном токе велико (более 1 ч) и температура плавления ее материала составляет много сотен градусов Цельсия, все детали предохранителя нагреваются до высоких температур. Происходит тепловое старение плавкой вставки.

Для снижения температуры плавления вставки при ее изготовлении применяются легкоплавкие металлы и сплавы. Материалы плавких вставок и их свойства даны в табл. 11.1.

Металл вставки Удельное сопротивление р , мкОм•м Температура, °С

допустимая

плавления

Медь

Серебро

Цинк

Свинец

0,0153

0,0147

0,05

0,21

250

200

150

1083

961

419

327

Материалы плавких вставок и их свойства Таблица 11.1

Наименьшую температуру плавления имеет свинец. Но удельное сопротивление свинца в 12 раз выше, чем у меди. Для того чтобы при прохождении данного тока вставка нагрелась до допустимой температуры (150 °С), ее сечение должно быть значительно больше, чем сечение вставки из меди.

При плавлении вставки пары металла ионизируются в возникающей дуге благодаря высокой температуре. Из-за большого объема вставки количество паров металла в дуге велико, что затрудняет ее гашение и уменьшает предельный ток, отключаемый предохранителем. Из-за этих особенностей вставок из легкоплавких металлов широкое распространение получили медные и серебряные плавкие вставки с металлургическим эффектом, который объясняется ниже. На тонкую медную проволоку (диаметром менее 0,001 м) наносится шарик из олова. При нагреве вставки сначала плавится олово, имеющее низкую температуру плавления (232СС). В месте контакта олова с проволокой начинается растворение меди и уменьшение ее сечения. Это вызывает увеличение сопротивления и повышение потерь в этой точке. Процесс длится до тех пор, пока медная проволока не расплавится в точке расположения оловянного шарика. Возникшая при этом дуга расплавляет проволоку на всей длине. Применение оловянного шарика снижает среднюю температуру плавления вставки до 280 °С.

Отношение IПОГР / Iном., уменьшается до 1,2, что дает улучшение времятоковой характеристики.

Стабильность времятоковой характеристики в значительной степени зависит от окисления плавкой вставки. Свинец и цинк образуют на воздухе пленку оксида, которая предохраняет вставку от изменения сечения. Медная вставка при длительной работе и высокой температуре интенсивно окисляется. Пленка оксида при изменении температурного режима отслаивается, и сечение вставки постепенно уменьшается. В результате плавкая вставка перегорает при номинальном токе, если ее температура при токе, близком к пограничному, выбрана высокой. В табл. 11.1 приведены рекомендуемые допустимые температуры вставок при номинальном токе. Температура медной вставки при токе, близком к номинальному, должна быть значительно ниже тепмературы плавления. Поэтому приходится завышать сечение вставки и тем самым увеличивать отношение IПОГР / Iном., примерно до 1,8, что ухудшает защитные свойства предохранителя.

Серебряные плавкие вставки не подвержены тепловому старению, и для них отношение IПОГР / Iном., определяется только нагревом.

У вставок из легкоплавких материалов эксплуатационная температура ближе к температуре плавления, что позволяет снизить отношение IПОГР / Iном., до 1,2—1,4.

В настоящее время в качестве материала плавкой вставки начали применять алюминий. Пленка оксида на поверхности вставки защищает алюминий от коррозии и делает характеристику предохранителя стабильной. Большее удельное сопротивление материала компенсируется увеличением сечения вставки. Алюминий имеет температуру плавления ниже, чем у меди (658 против 1083 °С).

Времятоковые характеристики предохранителей со вставками постоянного сечения из легкоплавкого металла хорошо согласуются с характеристиками силовых трансформаторов и других подобных объектов. Это объясняется низкой температурой плавления, стойкостью против коррозии и малой теплопроводностью материала таких вставок.

Медная вставка из-за высокой теплопроводности, высокой температуры плавления и большого отношения IПОГР / Iном в области малых перегрузок не обеспечивает защиту объекта (область А, рис. 11.1).

Конструкция предохранителей низкого напряжения

а) Предохранители с гашением дуги в закрытом объеме. Прсдохранители на токи от 15 до 60 А имеют упрощенную конструкцию. Плавкая вставка 1 прижимается к латунной обойме 4 колпачком 5, которые является выходным контактом (рис. 16.3, а). Плавкая вставка 1 штампуется из цинка, являющегося легкоплавким и стойким к коррозии материалом. Указанная форма вставки позволяет получить благоприятную времятоковую (защитную) характеристику. В предохранителях на токи более 60 А плавкая вставка 1 присоединяется к контактным ножам 2 с помощью болтов (рис. 11.2, б).

Вставка располагается в герметичном трубчатом патроне, который состоит из фибрового цилиндра 3, латунной обоймы 4 и латунного колпачка 5.

При отключении сгорают суженные перешейки плавкой вставки, после чего возникает дуга. Под действием температуры дуги фибровые стенки патрона выделяют газ, в результате чего давление в патроне за доли полупериода поднимается до 4—8 МПа. За счет увеличения давления поднимается вольт-амперная характеристика дуги, что способствует ее быстрому гашению.

Плавкая вставка может иметь от одного до четырех сужений (рис 11.2, в) в зависимости от номинального напряжения. Суженные участки вставки способствуют быстрому ее плавлению при КЗ и создают эффект токоограничения.

Поскольку гашение дуги происходит очень быстро (0,002 с), можно считать, что уширенные части вставки в процессе гашения остаются неподвижными. Рассмотрим вставку с четырьмя перешейками. После их перегорания образуются четыре разрыва. На каждом катоде разрыва восстанавливается электрическая прочность около 200 В, а суммарная прочность предохранителей достигает 800 В. Это явление наряду с высоким давлением позволяет надежно гасить дугу при напряжении источника до 500 В.

Давление внутри патрона пропорционально квадрату тока в момент плавления вставки и может достигать больших значений. Поэтому фибровый цилиндр должен обладать высокой механической прочностью, для чего на его концах установлены латунные обоймы 4. Диски 6, жестко связанные с контактными ножами 2, крепятся к обойме патрона 4 с помощью колпачков 5.

Предохранители работают бесшумно, практически без выброса пламени и газов, что позволяет устанавливать их на близком расстоянии друг от друга.


Рис. 11.2. Предохранитель типа ПР-2

Предохранители выпускаются двух осевых размеров — короткие и длинные. Короткие предназначены для работы на переменном напряжении не выше 380 В. Они имеют меньшую отключающую способность, чем длинные, рассчитанные на работу в сети с напряжением до 500 В.

В зависимости от номинального тока выпускается шесть габаритов патронов различных диаметров. В патроне каждого габарита могут устанавливаться вставки на различные номинальные токи. Так, в патроне на номинальный ток 15 А могут быть установлены вставки на ток 6, 10 и 15 А.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.