рефераты бесплатно

МЕНЮ


Учебное пособие: Электрические аппараты

Поэтому в основном считаются со временем движения. Для упрощения расчетов можно принять, что якорь и подвижные части двигаются равноускоренно под действием силы, равной средней силе пружины. Тогда время отпускания можно найти с помощью формулы


(5.17)

где т — приведенная к центру полюса масса якоря и подвижных частей; х— перемещение якоря; Fcp — приведенное к центру полюса среднее значение силы отключающей пружины на пути х.



Рис.5.4. Изменение токов в обмотке электромагнита при неизменном установившемся токе

Для создания электромагнитов замедленного действия применяются короткозамкнутая обмотка или гильза. Эскиз электромагнита с короткозамкнутой обмоткой показан на рис.

При включении питающей обмотки в магнитной цепи

нарастает поток. Этот поток наводит в короткозамкнутой обмотке э. д. с. Последняя вызывает ток такого направления, при котором поток короткозамкнутой обмотки направлен встречно с намагничивающим. Результирующий поток равен разности этих потоков. Скорость нарастания потока уменьшается, а время трогания увеличивается.

Результирующий поток нарастает во времени по экспоненте с суммарной постоянной времени


(5.18)

гдеустановившийся поток;

, и — постоянные времени обмоток.

 


Рис. 5.5.Электромагнит с короткозамкнутой обмоткой

Если пренебречь потоками рассеяния, то индуктивности  согласно равны:


(5.19)

Ввиду того, что при отпущенном якоре Gb мало, суммарная постоянная времени Ti + T2 невелика и замедление электромагнита получается небольшим.

При отключении электромагнита с короткозамкнутой обмоткой можно считать, что ток в первичной обмотке практически мгновенно спадает до нуля из-за быстрого нарастания сопротивления дугового промежутка в отключающем аппарате.

Изменение потока определяется процессом затухания тока в короткозамкнутой обмотке. При спадании потока в короткозамкнутой
обмотке w2 наводится э. д. с. и возникает ток, направленный так, что поток, создаваемый обмоткой о>2, препятствует изменению (уменьшению) потока в системе.

Замедленное спадание потока создает выдержку времени при отпускании.

Для вторичной короткозамкнутой обмотки ненасыщенной системы в этом случае можно записать:


(5.20)


Поскольку величина зазора уменьшилась, индуктивность при притянутом якоре больше, чем при отпущенном L-i.

Решив относительно тока, получим:


(5.21)

Умножив обе части на G\ w2, после преобразования получим:


(5.22)

Благодаря тому, что рабочий зазор в притянутом состоянии в десятки и даже сотни раз меньше, чем в отпущенном можно получить время трогания при отпускании до 10 сек, тогда как время трогания при притяжении составляет доли секунды.

При н. с, равной нулю, в цепи устанавливается поток, определяемый кривой размагничивания материала и воздушным зазором. Этот остаточный поток может создавать силу притяжения большую, чем сила, развиваемая пружиной. Произойдет залипание якоря. Для устранения залипания ставится немагнитная прокладка, снижающая величину остаточного потока.

В реальных конструкциях реле времени магнитная система при притянутом положении якоря сильно насыщена.

Для насыщенной цепи справедливо уравнение


(5.23)

Решив уравнение относительно времени, получим:


(5.24)


гдепоток, при котором сила, развиваемая пружиной, равна силе электромагнита.

Для определения значения интеграла рассчитывается зависимость потока в рабочем зазоре от н. с. После этого строится зависимость 1/ш=/(Ф) и графическим интегрированием решается.

в) Динамика электромагнитов переменного тока. Рассмотрим магнитную цепь электромагнита, у которого магнитопровод ненасыщен. Пусть включение происходит в нуль напряжения. В этом случае можно записать:


(5.25)

Поскольку цепь линейна, ток можно выразить через поток

 

Подставив, получим:


(5.26)

Решив это уравнение относительно потока, найдем:


(5.27)

где Фт — максимальное значение потока.

Согласно (5.27) при / = 0 поток в системе также равен нулю. Через время t=n/u> поток достигает наибольшего значения, поскольку постоянная составляющая потока складывается с переменной составляющей. Если пренебречь затуханием, то через полпериода поток достигает величины, равной 2Фта.

По мере затухания постоянной составляющей потока пиковое значение потока будет уменьшаться, пока не достигнет Фт. Таким образом, в электромагните переменного тока наибольшие пиковые значения потока, а следовательно, и силы, будут иметь место в начале процесса включения, причем пиковое значение потока и силы наступает примерно через 0,01 сек после начала включения (при частоте тока 50 Гц). Это обеспечивает малое время трогания.

Если магнитная система насыщена, то возникновение постоянной составляющей потока в момент включения ведет к появлению большого сильно искаженного намагничивающего тока.

При включении в нуль тока (потока) постоянная составляющая не появляется и пиковое значение потока появляется через четверть периода после начала включения. Таким образом, и в этом случае обеспечивается быстрое срабатывание электромагнита без применения специальных мер.

Расчет динамических характеристик электромагнитов переменного тока аналитически очень затруднен. Эту задачу удается решить применением аналоговых счетных машин. Необходимо отметить, что в момент включения электромагнита рабочий зазор в магнитной цепи велик, что вызывает согласно большой намагничивающий ток, в десятки раз больший, чем ток в притянутом положении якоря.

Магнитные цепи с постоянными магнитами

а) Общие сведения. Для создания постоянного магнитного поля в целом ряде электрических аппаратов используются постоянные магниты, которые изготавливаются из магнитно-твердых материалов, имеющих широкую петлю гистерезиса (рис.5.6).

Работа постоянного магнита происходит на участке отH= 0 до

H = — Нс. Эта часть петли называется кривой размагничивания.

Рассмотрим основные соотношения в постоянном магните, имеющем форму тороида с одним малым зазором б (рис.5.6). Благодаря форме тороида и небольшому зазору потоками рассеяния в таком магните можно пренебречь. Если зазор мал, то магнитное поле в нем можно считать однородным.


Рис.5.6. Кривая размагничивания постоянного магнита

Если пренебречь выпучиванием, то индукции в зазоре В& и внутри магнита В одинаковы.

На основании закона полного тока при интегрировании по замкнутому контуру 1231 рис. получим:


(5.28)


Рис.5.7 Постоянный магнит, имеющий форму тороида


Таким образом, напряженность поля в зазоре направлена встречно напряженности в теле магнита. Для электромагнита постоянного тока, имеющего аналогичную форму магнитной цепи, без учета насыщения можно написать:

Сравнивая можно видеть, что в случае с постоянным магнитом н. с, создающей поток в рабочем зазоре, является произведение напряженности в теле магнита на его длину с обратным знаком —Hl.

Воспользовавшись тем, что


(5.29)

получим:


(5.30)


или (5.31)

гдеплощадь полюса; проводимость воздушного зазора.

Уравнение есть уравнение прямой, проходящей через начало координат во втором квадранте под углом а к оси Н. С учетом масштаба индукции тв и напряженности тн угол а определяется равенством

 

(5.32)

Так как индукция и напряженность магнитного поля в теле постоянного магнита связаны кривой размагничивания, то пересечение указанной прямой с кривой размагничивания (точка А на рис.5.6) и определяет состояние сердечника при заданном зазоре.

При замкнутой цепи

и

(5.33)

С ростом б проводимость рабочего зазора и tga уменьшаются, индукция в рабочем зазоре падает, а напряженность поля внутри магнита увеличивается.

Одной из важных характеристик постоянного магнита является энергия магнитного поля в рабочем зазоре Wt. Учитывая, что поле в зазоре однородно,


(5.34)

Подставляя значение Нь получим:

(5.35)

где VM — объем тела магнита.

Таким образом, энергия в рабочем зазоре равна энергии внутри магнита.

Зависимость произведения В(—Н) в функции индукции показана на рис.5.6 . Очевидно, что для точки С, в которой В(—Н) достигает максимального значения, энергия в воздушном зазоре также достигает наибольшей величины, и с точки зрения использования постоянного магнита эта точка является оптимальной. Можно показать, что точка С, соответствующая максимуму произведения  есть точка пересечения с кривой размагничивания луча О К, проведенного через точку с координатами

Рассмотрим более подробно влияние зазора б на величину индукции В (рис.5.6). Если намагничивание магнита производилось при зазоре б, то после снятия внешнего поля в теле магнита установится индукция, соответствующая точке А. Положение этой точки определяется зазором б.

Уменьшим зазор до значения бi<б, тогда

(5.36)

При уменьшении зазора индукция в теле магнита возрастает, однако процесс изменения индукции идет не по кривой размагничивания, а по ветви частной петли гистерезиса AMD. Индукция В{ определяется точкой пересечения этой ветви с лучом, проведенным под углом к оси — Н (точка D).

Если мы снова увеличим зазор до значения б, то индукция будет падать до значения В, причем зависимость В (Н) будет определяться ветвью DNA частной петли гистерезиса. Обычно частная петля гистерезиса AMDNA достаточно узка и ее заменяют прямой AD, которую называют прямой возврата. Наклон к горизонтальной оси ( + Н) этой прямой называется коэффициентом возврата:


(5.37)

Характеристика размагничивания материала обычно не приводится полностью, а задаются только величины индукции насыщения Bs, остаточной индукции Вг, коэрцитивной силы Нс. Для расчета магнита необходимо знать всю кривую размагничивания, которая для большинства магнитно-твердых материалов хорошо аппроксимируется формулой


(5.38)

Кривая размагничивания, выражаемая (5.30), может быть легко построена графически, если известны Bs, Вг.

б) Определение потока в рабочем зазоре для заданной магнитной цепи. В реальной системе с постоянным магнитом поток в рабочем зазоре отличается от потока в нейтральном сечении (середине магнита) из-за наличия потоков рассеяния и выпучивания (рис.).


Рис.5.8. Магнитной цепи с постоянным магнитом и потоками рассеяния и выпучивания

Поток в нейтральном сечении равен:


(5.39)

гдепоток в нейтральном сечении;

поток выпучивания у полюсов;

поток рассеяния;

рабочий поток.

Коэффициент рассеяния о определяется равенством


(5.40)

Если принять, что потокисоздаются одной и той же разностью магнитных потенциалов, то


(5.41)

Индукцию в нейтральном сечении найдем, определив tga:


и воспользовавшись кривой размагничивания рис.5.6. Индукция в рабочем зазоре равна:


(5.42)

поскольку поток в рабочем зазоре в о раз меньше, чем поток в нейтральном сечении.

Очень часто намагничивание системы происходит в несобранном состоянии, когда проводимость рабочего зазора уменьшена из-за отсутствия деталей из ферромагнитного материала. В этом случае расчет ведется с использованием прямой возврата. Если потоки рассеяния значительны, то расчет рекомендуется вести по участкам, так же как и в случае электромагнита.

Потоки рассеяния в постоянных магнитах играют значительно большую роль, чем в электромагнитах. Дело в том, что магнитная проницаемость магнитно-твердых материалов значительно ниже, чем у магнитно-мягких, из которых изготавливаются системы для электромагнитов. Потоки рассеяния вызывают значительное падение магнитного потенциала вдоль постоянного магнита и уменьшают н. с, а следовательно, и поток в рабочем зазоре.

Коэффициент рассеяния выполненных систем колеблется в довольно широких пределах. Расчет коэффициента рассеяния и потоков рассеяния связан с большими трудностями. Поэтому при разработке новой конструкции величину коэффициента рассеяния рекомендуется определить на специальной модели, в которой постоянный магнит заменен электромагнитом. Намагничивающая обмотка выбирается такой, чтобы получить в рабочем зазоре необходимый поток.

в) Определение размеров магнита по требуемой индукции в рабочем зазоре. Эта задача является еще более трудной, чем определение потока при известных размерах. При выборе размеров магнитной цепи обычно стремятся к тому, чтобы индукция В0 и напряженность Н0 в нейтральном сечении соответствовали максимальному значению произведения Н0В0. При этом объем магнита будет минимальным. Даются следующие рекомендации по выбору материалов. Если требуется при больших зазорах получить большое значение индукции, то наиболее подходящим материалом является магнико. Если при большом зазоре необходимо создать небольшие индукции, то можно рекомендовать альниси. При малых рабочих зазорах и большом значении индукции целесообразно применение альни.

Сечение магнита выбирается из следующих соображений. Индукция в нейтральном сечении выбирается равной В0. Тогда поток в нейтральном сечении


откуда сечение магнита

Величины индукции в рабочем зазоре Вр и площадь полюса являются заданными величинами. Наиболее трудным является определение значения коэффициента рассеяния. Величина его зависит от конструкции и индукции в сердечнике. Если сечение магнита получилось большим, то применяют несколько магнитов, включенных параллельно. Длина магнита определяется из условия создания необходимой н.с. в рабочем зазоре при напряженности в теле магнита Н0:


где бр — величина рабочего зазора.

При больших рабочих зазорах рекомендуется соединять несколько магнитов последовательно.

После выбора основных размеров и конструирования магнита проводится поверочный расчет по методике, описанной ранее.

г) Стабилизация характеристик магнита. В процессе работы магнита наблюдается уменьшение потока в рабочем зазоре системы — старение магнита. Различают структурное, механическое и магнитное старение.

Структурное старение наступает вследствие того, что после закалки материала в нем возникают внутренние напряжения, материал приобретает неоднородную структуру. В процессе работы материал становится более однородным, внутренние напряжения исчезают. При этом остаточная индукция Вт и коэрцитивная сила Нс уменьшаются. Для борьбы со структурным старением материал подвергается термообработке в виде отпуска. При этом внутренние напряжения в материале исчезают. Его характеристики становятся более стабильными. Алюминиево-никелевые сплавы (альни и др.) не требуют структурной стабилизации.

Механическое старение наступает при ударах и вибрациях магнита. Для того чтобы сделать магнит нечувствительным к механическим воздействиям, его подвергают искусственному старению. Образцы магнита перед установкой в аппарат подвергаются таким ударам и вибрации, которые имеют место в эксплуатации.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.