рефераты бесплатно

МЕНЮ


Дипломная работа: Плазменное поверхностное упрочнение металлов

Испытания на трещиностойкость табл. 2.17. упрочненных сталей 45, ЗОХГСА, 5ЭХР1, 9ХФ, 65ХЗМФ показали [9], что процесс разрушения этих сталей происходит в несколько этапов. Субмикроскопическая трещина зарождается, растет в закален­ной зоне и останавливается в переходной зоне (более пластичной) упрочненного слоя. Для дальнейшего ее распространения необходимы существенно большие уси­лия, чем усилим зарождения в закаленном слое. Качественный анализ диаграмм раз­рушения и фрактографический анализ изломов показал, что разрушение упрочненных сталей с содержанием углерода до 0,9 %, происходит по механизму «множественного» разрушения с торможением трещины в переходной зоне по механизму искривления траектории. Эффект торможения трещины не приводит к повышению трещиностойкости, из-за недостаточно высокой вязкости разрушения слоя основного металла, распространенного под упрочненным слоем.

Исследование заэвтектоидных сталей [9], упрочненных плазменным нагре­вом, не выявило эффекта торможения трещины в переходной зоне. Кроме того, плазменное упрочнение этих сталей не приводит к снижению трещиностойкости из-за их высокой хрупкости в исходном состоянии.

Плазменное упрочнение с оплавлением поверхности приводит к повышению трещиностойкости на сталях содержащих менее 0,37 % углерода. На сталях с большим содержанием углерода трещиностойкость снижается, что проявляется в межзерновом характере разрушения оплавленного слоя.

Плазменное упрочнение с перекрытием дорожек упрочнения на 30, 50, 75 % существенно повышает трещиностойкость, но несколько снижает износостойкость.

 Повышение трещиностойкости и снижение износостойкости обусловлено образованием: зоны отпуска ( с троститно-сорбитной структурой) в месте перекрытия дорожек упрочнения. Регулируя степень перекрытия и режимы упрочнения, можно получить на рабочей поверхности чередующиеся по определенному закону твердые (хрупкие) и мягкие (пластичные) участки.

 

Табл. 2.18.

Результаты испытаний образцов после комплексного поверхностного упрочнения (температура + 20º С)

Технология упрочнения, марка стали

σ02

МПа

σв

МПа

δ

%

φ

%

КС

МДж/м2

К1сД

Мпа/м1/2

1

2

3

4

5

6

7

Закалка ТВЧ + плазменная обработка стали У8 75Х2МФ

Закалка ТВЧ + отпуск+плазменная обработка при температуре отпуска, º С

У8200º С

 300º С

 400º С

 75Х2МФ200º С

 300º С

 400º С

920

1180

900

1020

705

1120

1300

980

1240

1310

1190

1360

880

1310

1480

1060

5

4

2

7

5

2

7

4

28

24

16

31

27

14

28

24

0,048

0,053

0,030

0,058

0,046

0,027

0,070

0,050

5,32

7,47

3,18

8,07

5

14

4,83

9,84

7,34

Оценка трещиностойкости материалов после плазменного упрочнения, установление характера разрушения для различных вариантов упрочнения позволило авторам [9] разработать комплексную технологию упрочнения сталей 45, ЗОХГСА, 9ХФ, У8, 75Х2МФ, 150ХНМ, обеспечивающую получение высоких механических свойств, износостойкости и трещикостойкости, табл.2.18

Высокий комплекс механических свойств, а также повышение трещиностойкости и износостойкости получается при использовании комплексного упрочнения

Рис. 2.52. Влияние предварительной пластической деформации на механические свойства стали 45 после плазменной закалки

(деформация + плазменная

закалка), рис.2.52.

Повышение механических свойств после плазменного упрочнения обусловлено образованием

высокодисногоогомартенсита в упрочненном слое.

Увеличение степени дисперсностимартенсита и микротвердости является одной из главных причин повышения трещиностойкости и износостойкостипосле такой комплексной обработки.

Комплексная обработка, включающая в себя закалку ТВЧ + плазменную

закалку + лазерную закалку,

позволяет регулировать эксплуатационные свойства упрочненных деталей, табл.2.19.

                                                                                                                        Табл.2.19.

Результаты испытаний образцов из стали У8 комплексного упрочнения

(температура испытаний 250º С)

Технология упрочнения

σ02

МПа

σв

МПа

δ

%

φ

%

КС

МДж/м2

К1сД

Мпа/м1/2

1

2

3

4

5

6

7

1. Закалка и отпуск + (250º С)+ плазменная закалка

2. Закалка ТВЧ + плазменная закалка + лазерная закалка

3. Закалка ТВЧ + плазменная закалка + лазерная закалка + отпуск 180º С

 250º С

 300º С

 400º С

980

1150

1200

1020

900

700

1300

1510

 1580

1390

1080

920

6,2

7,8

7,9

7,1

6,2

5

29

38

 40

38

30

25

0,058

0,062

 0,064

0,058

0,052

0,048

7,8

8,9

 9,2

8,2

6,4

4,8

К числу важных эксплуатационных свойств, определяющих область применения плазменного упрочнения, относится усталостная прочность. На сопротивляемость усталости материалов, после плазменного упрочнения, большее влияние оказывают параметры режима упрочнения. Параметры режима упрочнения определя­ют: величину и знак остаточных напряжений, дисперсность микроструктуры и т.д.

Известно, что наличие высоких сжимающих остаточных напряжений в зака­ленной зоне оказывает положительное влияние на усталостную прочность [1,9, 16].

Однако высокая хрупкость мартенсита в закаленном слое может являться причиной преждевременного разрушения при многоцикловом погружении.

Проведенные исследования и анализ литературных данных[1, 12, 15, 16, 491], показали, что плазменное, лазерное и электронно-лучевое упрочнение значительно увеличивают усталостную прочность деталей, работающих в условиях цик­лического нагружения, рис. 2.53.

Испытания на усталость при изгибе с кручением коленчатых валов (сталь 45) после плазменного упрочнения показали, что предел усталости по началу трещинообразования (60 МПа) у не упрочненных также (60 МПа) и на разрушение (130Мпа против 120Мпа) [49].

Плазменное азотирование из газовой: фазы стали 20 также позволило повысить предел выносливости на 40-60 %, по сравнению с исходным материалом [24].

Плазменная нитроцементация стали 20 также повышает предел выносливости на 40-60 %, по сравнению с исходным материалом. Исследования показали, что предел выносливости стали сильно зависит от режимов упрочнения, т, к. от них зависит величина остаточных сжимающих напряжений на поверхности, содержание азота и углерода в упрочненном слое. Установлено, что нитроцементированный слой постоянной глубины, но с разным содержанием оста­точного аустенита имеет разные значения предела выносливости. В стали 20 повышение содержания остаточного аустенита с 5 % до 12%, при постоянной глуби­не нитроцементированного слоя , увеличивает значение предела выносливости на 10-20 %. Плазменная нитроцементация стали 20 повышает предел выносливости, по сравнению с простой плазменной закалкой, рис. 2.54.

Исследование пластичности диффузионных слоев на стали 20 [24] показали, что наибольшей пластичностью обладает малоазотистая фаза, соответствующая твердому раствору на базе нитрида Fе4N , рис. 2.55 а также карбонитридная фаза Fе3(NС).

Как уже отмечалось выше, основная цель поверхностного упрочнения - повышение износостойкости деталей машин и инструментов.

Формирование изнашиваемой поверхности происходит в результате суммирования различных по интенсивности и видам элементарных актов разрушения и изменений механических, физико-химических свойств материала, а также под воздействием внешних факторов (среда, температура, давление и т. д.). Совокупность явлений в процессе трения определяет вид изнашивания и его интенсивность. При назначении поверхностной упрочняющей обработки (с целью повышения износо­стойкости) необходимо установить причину изнашивания.

Под термином изнашивание понимают разрушение поверхности твердого тела, проявляющиеся в изменении его размеров или форм. Элементарные виды раз­рушения поверхностей трения: микрорезание, царапанье, отслаивание, выкрашива­ние, глубинное выравнивание, перенос материала, усталостное разрушение. Реали­зация элементарных видов разрушения на поверхностях трения возможно только при наличии следующих факторов: пластической деформации, повышенной темпе­ратуры и химического действия окружающей среды [55- 61].

Рис. 2.54. Диаграмма выносливости стали 20 после различных способов плазменного упрочнения

1.  Плазменная закалка

2.  Плазменная нитроцементация

В общем виде стадии изнашивания поверхности трения выглядят следующим образом, рис. 2.56.

Стадия начального изнашивания (приработка) характеризуется приобретени­ем стабильной шероховатостью поверхностей трения. Стадия установившегося из­нашивания характеризуется изменением микро- и макрогеометрия трения и постепенным увеличением интенсивности изнашивания. Процесс установившегося изнашивания заключается в деформировании, разрушении и непрерывном воссоздании

на отдельных участках поверхности слоя со стабильными свойствами. По мере истирания поверхностного слоя с повышенной износостойкостью открываются по­верхности с нестабильными свойствами, что вызывает катастрофический износ. Рис. 2.56а соответствует случаю, когда во время этапа приработки накапливаются факторы, которые после окончания приработки ускоряют процесс изнашивания.

Рис. 2.56б соответствует случаю, когда отсутствует этап приработки, апериод установившегося изнашивания наступает сразу после начала работы (металлообрабатывающий, деревообрабатывающий, медицинский инструмент, рабочие органы машин и т. д.). Рис. Рис. 2.56в соответствует случаю, когда детали находятся под действием контактных напряже­ний и длительное время работают практически без истирания. Основной механизм износа - усталостное выкрашивание поверхностных слоев.

Проведенные испытания на износостойкость сталей после различных видов термообработки при различных видах трения, показали существенные преимущест­ва плазменного поверхностного упрочнения перед традиционными способами. Ре­зультаты испытания в условиях сухого трения на воздухе по пальчиковой схеме [7-60] образцов стали 20, 45, 40Х, ЗОХГСА, прошедших плазменную закалку (без оп­лавления) представлены в табл. 2.20.

                                                                                                                                      Табл. 2.20.

Результаты испытаний на износостойкость стали 40Х

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.