рефераты бесплатно

МЕНЮ


Дипломная работа: Плазменное поверхностное упрочнение металлов

Рис. 2.35. Рентгенограмма зоны внутреннего азотирования на стали 20 при обработке азотной плазменной струей с оплавлением поверхности

Дальнейшее увеличение мощности плазменной азотосодержащей струи при упрочнении с оплавлением поверхности вызывает интенсивное порообразование. Происходит «азотное кипение» ванны расплавленного металла, что связано с уве­личением скорости поглощения азота поверхностью из плазмы (предел растворимо­сти азота в стали наступает почти мгновенно [24].

Распределение содержания азота по глубине диффузионных слоев снижается от поверхности к сердцевине основного металла, рис.2.36.

В работе [24] определены величины и знак остаточных напряжений после плазменного азотирования стали 20,9ХФ. Максимальные сжимающие напряжение зафиксированы в зоне нитридных фаз (на глубине 30 мкм).

 

Рис. 2.36. Распределение содержания азота по глубине азотированного слоя на стали 20

 1. обработка без оплавления

2. обработка с оплавлением

3. обработка с парообразованием

Рис. 2.37. Распределение остаточных напряженийпо глубине азотированного слоя на стали 20

 1. обработка без оплавления;

2. обработка с оплавлением.

Таким образом, использование активных плазмообразующих газов позволяет за доли секунды проводить химико-термическую обработку поверхностного слоя, как с оплавлением поверхности, так и без оплавления. Глубина легированного слоя в зависимости от режимов упрочнения может достигать 0,2-0,5 мм с микротвердостью на стали 20 6500-1300 Мпа, что значительно выше, чем при простой плазменной закалке.

Плазменное легирование из твердой фазы. Цементация.

В работах [26, 44] рассмотрены вопросы плазменной поверхностной цемента фазы. Сущность способа заключается в нанесении на поверхность металла углеродосодержащей обмазки или покрытия, которое оплавляется под воздействием плазменной струи. Под действием газодинамического напора плазменной струи происходит интенсивное перемешивание жидкого металла с углеродом и при последующей скорости кристаллизации образуется легированный углеродом слой.

В работах [26, 44] показано, что плазменная цементация из твердой фазы воз­можна только с оплавлением поверхности.

В качестве основного компонента углеродосодержащих паст, обмазок, покры­тий наиболее часто используют графит [26, 44]. При нанесении на сталь 20 углеродосодержащей пасты и последующего ее оплавления плазменной струей, в упроч­ненном слое образуются три зоны.

Первая зона (глубиной до100-120 мкм) является зоной легированной углеродом, с микротвердостью 8400-9200 Мпа. Структура не вытравливается.

Вторая зона глубиной до 50-100 мкм) является зоной закалки из твердой фазы,

Структура - мартенсит и остаточный аустенит. Микротвердость по глубине распре делена неравномерно, т.к. в этой зоне имеются структуры полном (ближе к легиро­ванной зоне) и неполной (нижняя граница зоны) закалки.

Рис. 2.38 Распределение микротвердости по глубине

легированного слоя (а), рентгенограмма

легированного слоя на стали 20 (б)

Третья зона - переходная зона, образовавшаяся при нагреве ниже точки Ас3.

Рентгеноструктурным анализом, рис. 2.38. выявлены, наряду с линиями γ - фазы и цементита линии смеси α- фазы и цементита. Средняя концентрация углерода в ле­гированном слое составляет ≈ 3,5 %, количество остаточного аустенита (10-12 %).

При плазменной цементации возможно получить слой не только с легирован­ной аустенитно-мартенситной структурой., но и слой со структурой белого чугуна [26]. Структура белого чугуна была получена на стали 20. Нагрев и выдержка при температуре 500° С не выявил снижение микротвердости, которая осталась на уров­не 6500-8000 Мпа.

В работах [26, 44, 45] установлены зависимости между параметрами плазмен­ного упрочнения на глубину и ширину цементированного слоя, рис. 2.39., 2.40.

Рис. 2.39. Влияние скорости обработки

на глубину и ширину цементированной зоны.

Рис. 2.40. Зависимость глубины цементированной зоны

от мощности плазменной струи.

На глубину и твердость легированного слоя сильное влияние оказывает толщина углеродосодержащей обмазки, эффективное расплавление которой зависит от мощности плазменной струи, рис. 2.41.

Рис. 2.41. Влияние толщины углеродосодержащей пасты

на мощность плазменной струи.

Рентгеноструктурный и фазовый анализ сталей 45, ЗОХГСА, 40Х, 20X13, 12ХФ1, проведенный в работах Скрипкина А.А., показал, что после плазменной це­ментации из твердой фазы в поверхностном слое углеродистых и легированных сталей происходит сильное перераспределение легирующих элементов в упрочнен­ном слое. В упрочненном слое, в зависимости от режимов обработки, остаточные напряжения имеют резко выраженную неоднородность. По глубине упрочненного слоя остаточные напряжения распределяются следующим образом: в оплавленной зоне (50-100 мкм) зафиксированы растягивающие напряжения, которые переходят в сжимающие во втором слое (10-20 мкм) со структурой мартенсита. В переходной зоне зафиксированы напряжения растяжения. Сильное влияние на характер распре­деления остаточных напряжений оказывает химический состав стали и параметры обработки.

Рис. 2.42. Влияние дополнительного тока,

пропускаемого через деталь

на глубину легированного слоя стали 20

при плазменной цементации.

1. Р=2кВ; 2. Р=3кВ; 3. Р=4кВ; 5. Р=6кВ; 6. Р=8кВ

Для увеличения глубины легированного слоя можно использовать электротер­мический эффект (через деталь пропускается электрический ток). Проведенные ис­следования на сталях 3, 20, 40, 20X13, ЗОХГСА показали, что глубина легированно­го слоя (углеродом) может достигать 0,6-1 мм и зависит от параметров режима упрочнения, параметров дополнительного тока (род тока, сила тока и т.д.), рис. 2.42.

Электротермический эффект можно использовать практически во всех способах плазменного легирования, использующих плазменную струю. Важной особенностью данного эффекта является возможность легирования без оплавления поверхности.

При использовании плазменной дуги, глубина легированного слоя в 1,5-2 раза больше по сравнению с плазменной струей, за счет электронного тока. Однако ле­гирующие обмазки должны проводить электрический ток с целью обеспечения стабильности плазменного упрочнения в режиме дуги.

Азотирование.

В качестве паст, обмазок используют азотосодержащие соли. Насту со связующей связкой наносят на поверхность изделия слоем толщиной 0,5-1,5 мм и проводят плазменный нагрев с оплавлением поверхностности. В поверхност­ном слое на стали 20 образуется не только α→γ твердые растворы азота в железе, но и нитрид Fе2,N. Микротвердость легированного слоя достигает 8400-8800 Мпа.

При использовании электротермического эффекта (ЭТЭ) глубина азотированного слоя возрастает, табл. 2.15.

                                                                                            табл. 2.15.

Марка стали

Микротвердость, МПа

Глубина, мм

Плазменное легирование

Без ЭТЭ

с ЭТЭ

1.

2.

3.

4.

Ст.3

Сталь 10

20

45

40Х

30ХГСА

8900-9500

6700-8000

7500-9000

10500-11400

12100-14000

10500-11800

0,15-0,3

0,30-0,35

0,30-0,4

0,35-0,40

0,25-0,35

0,3-0,4

0,6

0,7-0,8

0,7-0,8

0,6-0,9

0,8-1,2

0,8-1,2

 

Борирование

Плазменное борирование осуществлялось при помощи специ­альных активных паст на основе порошка карбида бора. Диффузионный слой на стали 20 состоит из вытянутых и ориентированных перпендикулярно поверхности боридных фаз (FеВ,Fе3В). Толщина слоя составляет 0,1-0,180 мкм. На поверхности образуется FеВ и Fе2В (под слоем). На стали 65Г и 45 борированные слои имеют меньшую глубину, т.к. углерод препятствует диффузии бора в железе и оттесняется вглубь, образуя карбобориды по границам зерен. Микротвердость борида FеВ 18000-20100 Мпа, а Fе2В- 15000-16500 Мпа. При борировании возможно образова­ние наряду с фазами FеВ и Fе2В- β- модификации бора с микротвердостью 25000-30000 Мпа. Однако, в наших исследованиях на стали 5, 10, 20, 45, 65Г, У10 такой модификации не зафиксировано.

Нитроцементация. Одновременноенасыщениеповерхностныхслоев стальных изделий углеродом и азотом проводилось при помощи паст на основе (K4Fe(CN)6 +

Рис. 2.43.Распределение остаточных напряжений по глубине нитроцементированного слоя стали.

1 – сталь 20

2 – сталь 45

графит + связующее вещество. На стали 20 глубина легированного слоя достигает 0,3-0,45 мм. Концентрация углерода в поверхностном слое может достигать 2-3%, а азота 1,5-2,1%. Количество остаточного аустенита находится в пределах (5-18%) и зависит от скорости нагрева и охлаждения. При обработке холодом остаточ­ный аустенит почти полностью устраняется. Микротвердость на поверхности стали 20 достигает 9800-10800 МПа.

Нитроцементированный слой на стали 45 содержит мартенсит + остаточный Аустенит. Определение остаточного напряжения показало, что максимальные на­пряжения сжатия расположены на 50-110 мкм от поверхности. По всей видимости это связано с высокой концентрацией азота и углерода в поверхностном слое и как следствие этого - повышенным количеством остаточного аустенита.

Плазменное легирование из жидкой фазы

Подробно процесс плазменно­го упрочнения в жидких средах рассмотрен в работе [25], где указывалось на воз­можность химико-термического упрочнения при использовании различных насы­щающих жидкостей (углеродосодержащих, азотосодержащих и т.д.), рис. 2.44.

Рис. 2.44. Влияние среды на степень упрочнения стали 45

1.  исходная твердость до упрочнения

2.  плазменное упрочнение на воздухе

3.  плазменное упрочнение в 80% растворе хлористого аммония

4.  плазменное упрочнение в воде

Для насыщения поверхностного слоя углеродом или азотом обрабатываемую деталь погружают в жидкость, содержащую углерод (толуол, минеральное масло и др.) или азот (водяной раствор хлористого аммония и др.)

В работе [25] был исследован процесс азотирования из жидкой фазы (водный раствор хлористого аммония) на образцах стали 20, 45, 50, 9ХФ, 38ХНМЮЛ.

Установлено, что процесс азотирования наблюдается только при оплавлении поверхности, рис. 2.45.

Рис. 2.45. Влияние мощности плазменной струи на микротвердость стали 20.

I. закалка без оплавления

II. закалка с оплавлением

III.Плазменное легирование из жидкой фазы.

Азотированный слой на стали 20 представляет собой белую плохо травящуюся полоску карбонитридного состава, содержащую ≈ 4 % азота, ≈ 1,5 углерода, ≈ 10-15% остаточного аустенита. Содержание остаточного аустенита на стали 20 возрас­тает с увеличением длительности насыщения и концентрации азота в растворе.

Комбинированные способы плазменного легирования

Рис. 2.46. Влияние среды на степень упрочнения на стали 3.

1.  исходная твердость

2.  плазменное упрочнение на воздухе

3.  плазменное упрочнение в воде

4,5. плазменное упрочнение в солевом растворе NaCO (без оплавления и с оплавлением соответственно)

6. плазменное упрочнение в солевом растворе NaCO с добавкой 20% CО к плазмообразующему аргону (без оплавления)

К комбинированным способам плазменного легирования относятся способы плазменного легирования (твердая фаза + жидкая фаза; твердая фаза + жидкая + га­зовая фаза и т.д.) рис. 2.46.

Плазменное легирование из жидкой, твердой и газовой фазы

Исследова­ния проводились на стали 20, 45. В качестве жидкой среды использовался водный раствор соли аммония (различной концентрации), газовые среды (азот и пропан, СО2), пасты (углеродосодержащие, азотосодержащие).

Азотирование Проведенные исследования показали, что увеличение концен­трации азота в зоне обработки приводит к повышению содержания азота в поверхностных слоях, следствием чего является увеличение глубины слоя и микротвердо­сти, табл. 2.16. Микроструктура слоя после комплексного легирования такая же, как и после простого азотирования из газовой и твердой фазы. Непосредственно на по­верхности образуется насыщенная азотом нетравящаяся ε – фаза, за ней переохлаж­денная γ – фаза, под которой находится азотистый мартенсит.

Нитроцементация. Особенностью комбинированного способа нитроцементации при плазменном упрочнении является повышенная концентрация азота и углерода. Слой наибольшей твердости и глубины получается при комбинации: плазмообразующий газ (азот 100 %) + азотоуглеродосодержащая паста.

Глубина диффузионного слоя на стали 20 составляла 0,6-1,1 мм, микротвер­дость 11000-12500 Мпа. Микротвердость повышается при увеличении скорости на­грева. Нагрев с большей скоростью уменьшает время, в течении которого азотоуглеродосодержащая паста находится в расплавленном состоянии, что увеличивает концентрацию активных атомов углерода и азота на границе раздела: насыщенная среда - поверхность металла. Однако, концентрации азота и углерода приводит к увеличению остаточного аустенита (от 2,5 до 10 % на стали 20), что снижает микротвердость. Глубина диффузионного слоя на стали 45 составляла 0,65-0,8 мм., а микротвердость 11200 -13000 Мпа. Содержание остаточного аустенита увеличивается  при повышении скорости обработки (от 8 до 15 %). Нитроцементированный слой на стали 45 после легирования по структуре аналогичен процессу нитроцементации, описанному выше.

 Табл. 2.16.

Марка стали

Вариант легирования

Глубина слоя, мм

Микротвердость, Мпа

Легированного

Общая

1 2 3 4 5
Сталь 20

1.  Плазмообразующий газ азот (100%) (без оплавления

2.  Плазмообразующий газ азот (100%) + 90% водный раствор хлористого аммония (без оплавления)

3.  Плазмообразующий газ азот (100%)+90% водный раствор хлористого аммония (с оплавлением)

4.  Плазмообразующий газ азот (60%) + аргон (40%) +азотосодержащая паста

 (с оплавлением)

5.  Плазмообразующий газ азот (100%) + 50% водного раствора хлористого аммония +азотосодержащая паста ( с оплавлением)

6.  Плазмообразующий газ аргон (100%)+ 50% водного раствора хлористого аммония +азотосодержащая паста (с оплавлением)

7.  Плазмообразующий газ аргон (100%)+ азотосодержащая паста (с оплавлением)

0,3-0,35

0,35-0,55

0,6-0,8

0,6-0,8

0,75-0,1

0,75-0,1

0,6-0,8

0,7

0,9

1,8

2

3

1,2

2

8100-8200

8300-9400

8800-12000*

(пористая поверхность)

7200-8800

9100-11300* (пористая поверхность)

8800-9500

8800-9200

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.